Streamlining LOFAR System Health Management

A.J. Boonstra¹⁾ and W. Jansen¹⁾

Netherlands Institute for Radio Astronomy, ASTRON Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, NL, web: www.astron.nl, email: boonstra@astron.nl

LOFAR radio telescope

- a phased array aperture synthesis radio telescope
- · with 38 Dutch stations, 14 international stations
- with ~ 100.000 antennas
- with over 400 TFLOPS central computing power
- producing up to 100 TByte data daily

gives great science ... and maintenance challenges

System health challenge

Given ~ 10,000 LOFAR spectrogram plots per observation, how to detect and identify system erors efficiently?

- a) Creating error dictionary, relating visibility spectrogram features to system errors:
 - → expensive, requires in depth system knowledge to create
- b) Use machine learning (ML) to cluster and classify similar image features
 - relatively easy and cheap, but does not automatically identify error type

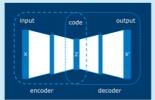
Goal: automated error detection, error identification, and reporting

Conventional approach for feature separation and detection

Subspace analysis: different features reside in different subspaces

- 2D FFT
- Wavelets
- SVD

ICD Project AI&ML

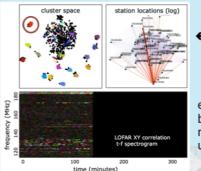

Picture credit: Maurine Santigny ASTRON / U. Orleans

ASTRON / U. Orleans high-f Intermittent radio interference low-f strong source in telescope station spatial side-lobe

Machine Learning for feature clustering: traning

Neural net trained on 160 LOFAR MS data sets:

- · compresses each 100 TByte data set to 1 GByte
 - · sub samples visibilities
 - re-scales data points to fit in 1 byte
- applies autoencoder to train net



Use t-SNE / DBSCAN for dimensionality reduction and clustering of new observed data

Credit: NLeSC / ASTRON ADDER project

Machine Learning: result

from ~10,000 spectrogram images (baselines) to a hand full of clusters containing typical features

location of telescope stations (dots) and baselines (colored lines)

example: one station broke down after 140 minutes (brown cluster upper left in circle)

Status

- Observatory automatically produces compressed data sets and clusters of baseline spectrograms for efficient data inspection
- Already a useful tool but clustering is not yet perfect, and classification is not yet included

Outlook

- Improve clustering
- · Include separation of features
- Create feature dictionary and add classification

