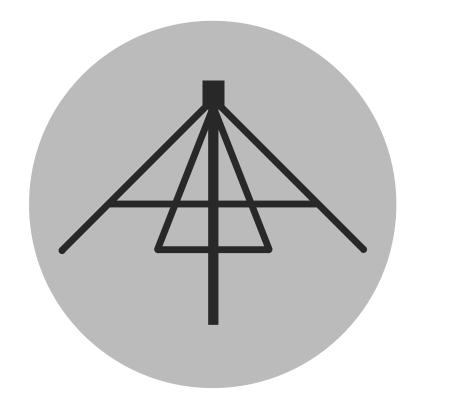
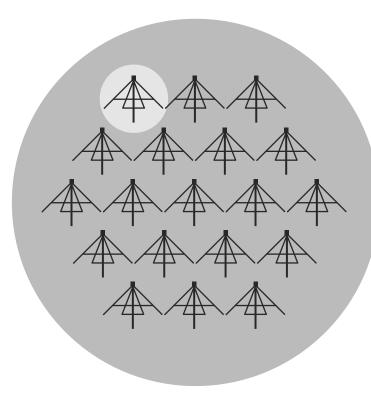
Data Management and computing services for the NenuFAR telescope

Alan Loh¹, Baptiste Cecconi¹, Julien Girard², Cédric Viou³, Emmanuel Thétas³, Philippe Zarka^{1,3}, Laurent Denis³ & the NenuFAR team

¹ LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France ² AIM/CEA Paris-Saclay, Université de Paris, CNRS, Gif-sur-Yvette, France

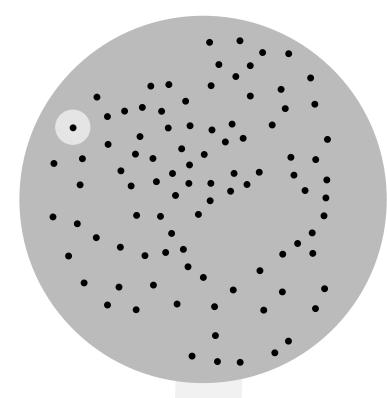

³ Station de radioastronomie de Nançay, CNRS/Observatoire de Paris - PSL - Université d'Orléans/OSUC, 18330 Nançay, France


Abstract

NenuFAR is a new radioastronomy instrument located in Nançay (France) operating in the 10-85 MHz frequency band. It is a SKA (Square Kilometre Array) Pathfinder at low frequency at the last stages of its construction, currently in early science phase. The instrument will produce up to 2 PB of data per year in its standalone imager mode. We are now setting up a local data center in order to pre-process the raw data. An e- or physical infrastructure is under development and will allow for, e.g., data transfer/storage/archive, user access and computing time allocation management, scientific analysis platform deployment with preconfigured radio astronomy software suites.

New extension in Nançay upgrading LOFAR

NenuFAR

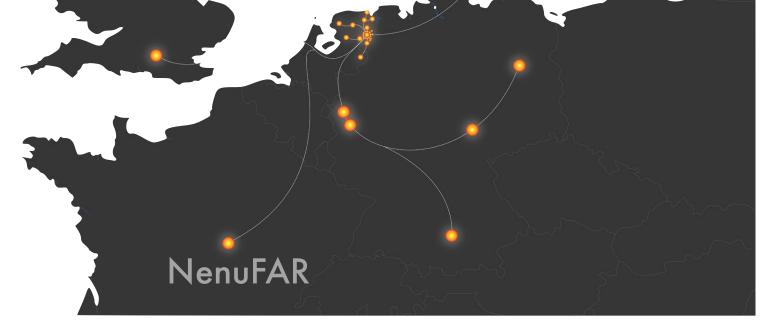

Mini-Array

Hexagon tile of 19 antennas

Analog beamforming with delay lines

16384 pointable directions on the sky

Beam width: 46° at 15 MHz, 8° at 85 MHz


LOFAR SuperStation

Antenna 1938 LWA-like radiator antennas Dual-polarizations inverted V shape elements Low-Noise Amplifier All-sky field of view Broadband response at 10–85 MHz

Standalone instrument

NenuFAR Array

96 mini-arrays (400m core) + 6 remote (up to 3km) Optimal uv plane coverage for snapshots Relative MA rotations: dampen grating lobes

NenuFAR replaces LOFAR FR606 LBA Connected to LBL inputs Long-baselines involving NenuFAR: increased sensitivity

LANewBa

LOFAR-like Advanced New Backend

Pre-processing analog signals received by MAs Digital backend (based on ADCs + FPGAs) NenuFAR beamformer Statistics data (SST, BST, XST)

UnDySPuTeD

Time-Frequency observations: down to 3kHz, 1ms resolution Pulsar backend:

coherent dedispersion and pulse phase folding

NenuFAR Radio Imager

Correlator NICKEL NenuFAR Imager Correlation Kluster **Elaborated from LOFAR's**

Based on COBALT2.0 (ASTRON's new LOFAR correlator) 96 (+6) antenna fields Continuous ingestion of 102x2.4Gb/s-streams for several hours from LANewBa Real-time data crunch by the cluster's V100 Nvidia GPUs Output 1GB/s stream of covariance matrices (LO data)

LO Data

Raw (or 'Level 0') visibilities: 14 To/h LOFAR-compatible Measurement Set format

Local conversion at Nançay Data Centre

5.0

4.5

4.0

3.5 E ea 3.0 Q

2.5 🖉

2.0 ਨ੍ਹੇ

1.5 e

1.0

0.5

L1 Data

Reduced (or 'Level 1') visibilities: max 5–10 To/day LOFAR-compatible Measurement Set format Lower resolution both in frequency and time

Plot	t Flag Tools Annotate Options		Amp vs. Frequency				
n Data	Colorize: Spw V Unflagged Points Symbol		1e+08 -				
Calibration	C None C Default C Custom Style: 2px, autoscaling Fill: 0000ff ffill ¥		- 8e+07 - -				
Page Axes	Outline: r None r Default Flagged Points Symbol r None r Default		- 6e+07 - du -				
Transform Pa	C Custom Style: 2px, circle Fill: ff0000fill Outline: 6 None C Default		4e+07 - -				
_	Baanie (* None (* Delauit		2e+07 -				
Display	-		, - - -			i III uinnnain.	
⇒ as		-	·	0.07	0.075	0.08	0.0
Add	d Plot 🔽 Reload Plot	F II.			Frequency (G	Hz) TOPO	

Images

Single MA primary beam = NenuFAR field of view				
= NenuFAR field of view				
	= NenuFA	R field of vi	iew	

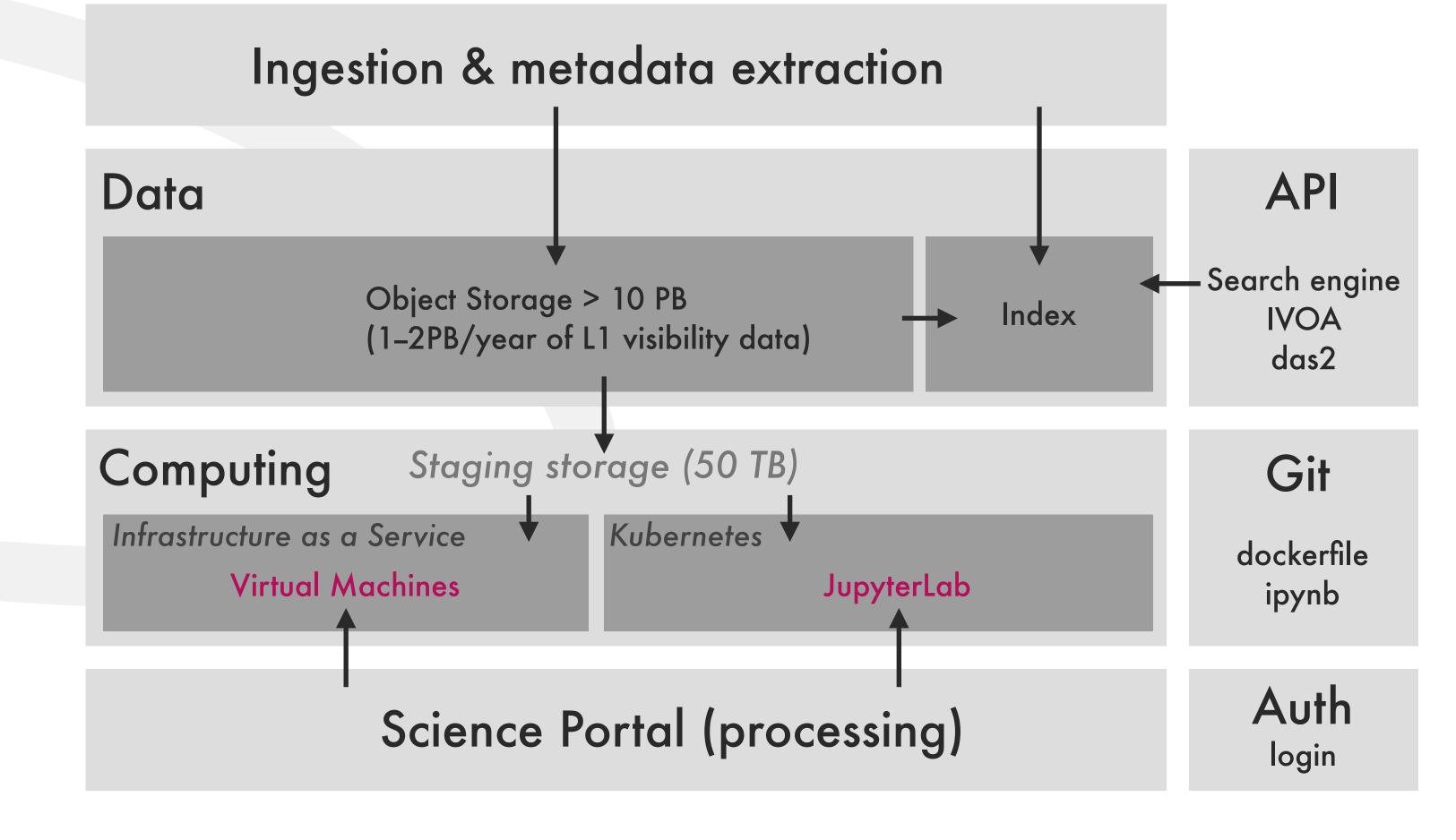
Transfer to NenuFAR Data Center

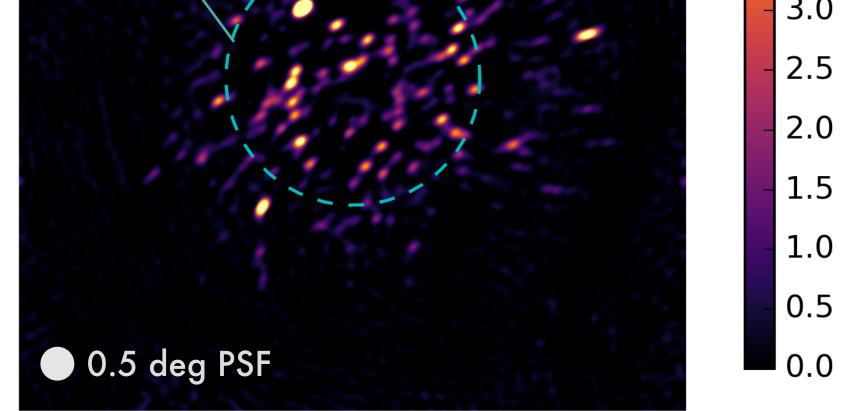
75-MHz total instantaneous bandwidth 384 subbands (64 channels/subband) Channelization down to 3kHz once per sec

> Erased after conversion to L1

Transient Buffer Board Stores last 5s of waveform (at 5ns resolution) for each MA and each polarization

NenuFAR Data Center


Scalable structure, Open Science,


FAIR principles (findability, accessibility, interoperability, and reusability) Several options are currently under investigation:

- e-infrastructure (EGI)

- physical infrastructure (partnership with BRGM Orléans, France-Grille or GENCI)

Web services are identified and available (collaboration with MeerKAT/ILIFU, LOFAR/EOSC?) Storage of several PB per year is challenging (cost and expertise) Archive is an issue (too expensive regarding the amount of data compared to re-observing)

74 MHz image of the North Celestial Pole made from a 6-h observation with 56 MAs. The PSF will eventually improve to 4 arcmin at 85 MHz with the full array (core + remote MAs).

Credits: Cosmic Dawn NenuFAR Key Project team (https://www.astron.nl/dailyimage/ main.php?date=20190708)

Radioastronomy softwares suites: Kern CASA / AIPS LOFAR DPPP Prefactor KillMS / DDFacet

. . .

References

P. Zarka et al., (http://nenufar.obs-nancay.fr) Girard, PhD Thesis, Developement of the LOFAR Super Station & planetary observations with LOFAR, 2013

