The JWST Science Calibration Pipeline

Howard Bushouse (Space Telescope Science Institute)

Overview

All James Webb Space Telescope (JWST) observing modes are processed and calibrated automatically to produce analysisready products for users:

- Direct and Coronagraphic Imaging
- Aperture Masking Interferometry (AMI) Imaging
- Slit-like Spectroscopy
- Integral Field Unit Spectroscopy (IFU)
- Multi-Object Spectroscopy (MOS)
- Wide Field Slitless Spectroscopy (WFSS)
- Time Series Observations (TSO)

Pipeline Organization and Stages

Pipeline organized by observing modes, in 3 stages:

- Detector-level corrections for individual exposures
- Instrument-level calibrations for individual exposures 2.
- 3. Combine data from multiple exposures
- All pipeline and step modules written as Python classes
- Callable from command line and from within Python
- Liberal use of public Astropy libraries
- Software data models abstract the connection to disk files

Stage 1 Corrections

Typical corrections needed for Near-IR and Mid-IR "up the ramp" detector readouts applied to all instruments, e.g.

- Saturation flagging
- Reference pixel correction
- Persistence correction
- Dark subtraction
- Linearity correction

Stage 2 Calibrations

Full calibration of individual exposures

Imaging

- WCS Object Construction
- **Background Subtraction**
- Flat-Fielding
- Flux Calibration
- Image Rectification

Spectroscopy

- WCS Object Construction
- **Background Subtraction**
- MSA Failed Shutter Flagging
- 2-D Spectral Extraction
- Flat-Fielding
- Stray Light Correction
- Fringing Correction

- Jump (CR) flagging
- Slope fitting with CR and saturation removal

Stage 3 Calibrations

Calibration and Combination of Multiple Exposures

Direct Imaging

- Image Alignment
- Background Matching
- **Outlier Detection**
- Drizzle Combination
- Source Catalog

Coronagraphic Imaging

- Collect PSF Images
- Align PSF & Target Images
- PSF Subtraction (KLIP) **Outlier Detection**

Spectroscopy

- Master Background Sub
- Background Matching (IFU)
- 2-D Outlier Detection
- 2-D/3-D Drizzle Combination
- 1-D Spectral Extraction ullet

TSO Imaging

- 2-D Outlier Detection
- Source Photometry (light curve generation)

2-D spectral extraction of sources/slits driven by:

- MOS User-supplied source catalog and MSA slitlet definitions
- WFSS Source catalog constructed on-the-fly from accompanying direct images of the field
- Pathloss Correction
- Flux Calibration \bullet
- 2-D/3-D Rectification
- 1-D Spectral Extraction

Associations of Exposures

- Meta data for all exposures of a target within a program stored in Association "pool" (simple ASCII csv file)
- Association "rules" (software filters) analyze the pool meta data to find exposures that belong together, e.g.
 - Multiple detector images of a target for mosaicing
 - Same target, same filter for dithered/mosaiced images
 - Off-source background exposures for a target
 - Contemporaneous calibration exposures (flats, wavecals)

Drizzle Combination

AMI Imaging

- Collect PSF Images
- Compute Fringe Params
- Average Fringe Params
- Normalize Target Fringe Params from PSF Fringes

TSO Spectroscopy

- 2-D Outlier Detection
- 1-D Spectral Extraction
- White-Light Photometry (light curve generation)

• PSF reference target exposures for coronagraphy and AMI

- Direct images accompanying WFSS (dispersed) images
- Association files (json text format) contain lists of exposures created by the rules, along with attributes such as their role in the Association (science, background, PSF, flat, etc.)
- Association files are input to the stage 2 and 3 pipelines
 - Pipelines open the list of input files and use the attributes to know where/how to use them, e.g. background subtraction, PSF subtraction, etc.