
architecture [2] (ADAPT), with the XTSS (eXTernal State

System) to set Member ObsUnitSets to the Processing state.

The core functionality of the application is creating execution

scripts to run Pipeline Driver (Python application) for every listed

ObsUnitSet and pass them to distributed resource manager

Torque to run pipeline executions.

2. Interface.

There are three endpoints available in the REST interface:

● “pipeline”, parameters "mode=try&pipe=5&checkData=true"

● “assign”, parameter ObsUnitSet ID

● “manual”, parameter a number of ObsUnitSets

They provide the functionality of pipeline batch (“pipeline”) and

individual (“assign”) executions. Endpoint for manual processing

(“manual”) provides just the list of ObsUnitSets which need to be

processed.

Fig.2. CLAI user interface.

The graphical user interface was written using Semantic UI

framework and provides the same functionality as the REST

interface with several interactive options, like a possibility to

select which ObsUnitSets should be processed from the given

list.

The future versions of the application will support additional

configuration options for memory management and the

possibility to run jobs in the serial or parallel modes.

References

1. P10.41 Joe Masters. Pipeline Calibration and Imaging for the

ALMA Observatory

2. P9.1 A.M. Chavan. Re-engineering data processing for

resilience: ALMA's new message-passing backbone.

Chalevin A., etamax space GmbH, European Southern Observatory, Garching, Germany.

Cluster/ADAPT Interface Tool (CLAI)

Introduction

The application was developed with a purpose to orchestrate

pipeline processing of ALMA Member Observing Unit Sets. The

algorithm was originally implemented in a Python tool and

converted by us to Java. CLAI is a SpringBoot/Angular

application, providing both GUI and REST interfaces to operate

with pipeline executions.

There are several factors taken into account to select and

prioritize ObsUnitSets. As a first approach, we pick ObsUnitSets

with Pipeline or Manual processing recipes and a type of

telescope array according to the local preferences. The obtained

list of ObsUnitSets is then sorted by priority grade, observing

cycle and time passed since the last observation was taken.

Sorted such way, ObsUnteSets then are being sent for

automatic pipeline execution or provided as a list for manual

processing.

1. Architecture

The application consists of the Java back-end server, written

using Spring Boot framework and the Angular front-end

component. The back-end server provides a public REST

interface to let 3rd party scripts and applications manage pipeline

executions [1] (see diagram 1). The Java server in its turn

interacts with ALMA database server and, using ALMA message

The Cluster/ADAPT Interface (CLAI) is a Web application allowing the user to select ALMA observing blocks for

manual and automatic pipeline reduction at one of the ALMA locations. CLAI produces prioritized lists of automatic and

manual so-called Member Observing Unit Sets according to the locally configured filters and sends commands to the

computing cluster to queue processing if such option is activated.

Fig.1. CLAI structure and interaction with other components.

	Slide 1

