
MMIS: StationMonitor
combining different tests data to provide an overview of the LOFAR array status

Birr

Chilbolton

Nançay Unterweilenbach

Jülich
Efelsberg

Potsdam

Tautenburg

Irbene

Bałdy

Borówiec

Łazy

Onsala

Norderstedt

Medicina

Dutch stations

Station

HBA

LBA

Cabinet Component

ElementThe LOFAR telescope
 The LOFAR telescope is composed of several stations spread
across Europe. A station consists of many components.
However, only a subset of such components is tested by the
station tests. For sake of simplicity, we will focus on the
antennas only. There are two kind of antennas in a LOFAR
station: the Low Band Antenna (LBA) and the High Band
Antenna (HBA). LBA antennas are sensitive for frequency
range ~10-90 MHz while HBA's are sensitive for ~100-200
MHz. An HBA antenna is composed of 16 elements. Each
element hosts a couple of dipoles, one per polarization. The
LBA antenna is considered a single component with a dipole
per polarization.

Implementation
To expose the WinCC data to the station monitor we developed a c++ application called
WinCCDBInterface using the WinCC C++ API and the Qt5 to react on every datapoint
change listed in a configuration file and store the datapoint value directly in a table on the
Postgres database. The WinCCDBInterface can also be configured to do a checkpoint at a
given time were all the value of the configured datapoints are stored regardless if their
value changes.

The database interface, tasks back-end and REST interface are implemented using the
Django python framework. We used the Django Object relational mapping (ORM) to
manage the database interaction and the tables and to expose a REST API through the
django rest framework plugin. The text files from the RTSM and Station Test are
automatically transferred to the Station Monitor server after the test is done. By using file
system events, a REST call is performed with the test file and the corresponding task is
fired. The tasks are carried out in the task backend developed with the help of the Celery
framework. We choose the RabbitMQ message broker as result backend Celery. Using a
asynchronous task queue prevents exhausting server resources and long blocking web
server requests. A disadvantage is that in some cases a polling mechanism is necessary to
check if a task has completed.

Observation RTSM
 WinCC
Observation RTSM
 WinCC

Observation RTSM

Master WinCC node

W
in

C
C

D
B

In
te

rf
ac

e

Station testStation

DBInterface (ORM)

Tasks backend

DBInterface (ORM)

Celery worker

Actor
WebApp (SPA)

TextFiles

TextFiles

WinCC

Station Monitor

RabbitMQ

REST interface

Postgres
database

The user interface
from the station to the single componentfrom the station to the single component

Reinoud Bokhorst

Mattia Mancini

Future development
The first version is now operational. In the near future the Station Monitor will be extended with additional data types and functionalities. We will add the maintenance log

containing repair actions executed by a field engineer and shown in the timeline of components and elements. This helps when interpreting the history of errors and to judge if
a repair was successful. Moreover, we will add the possibility to create reports containing various statistics of the data containing in the station monitor. As this needs to be
flexible we are currently experimenting with exporting the data to Elasticsearch and use Kibana as interface to create various reports and graphs. Finally, we would like to

trigger on certain results of the Station Test or the RTSM so that problematic antennas can be automatically disabled or re-enabled once tested.

