
ASTRON is part of the Netherlands Organisation for Scientific Research

www.astron.nl

Nico Vermaas, Vanessa Moss, Roy de Goei.

APERTIF Task Database
A microservices architecture with Django and Python

Django
The datamodel is described as Django 
models classes, which becomes the 
‘single source of truth’.

The database is generated and 
maintained by ‘migrating’ when the 
data model changes..

The business logic lives in Django 
views and is used to inform all the http 
responses to both REST API and the 
GUI.

The serializers.py define what the 
REST API returns and the html 
templates define the GUI.

Architecture

Workflow User Experience

Infrastructure

ATDB GUI
The main GUI is created with Django’s html templates, served by the Nginx & Gunicorn backend webserver and 
styled with bootstrap.It gives feedback over the (mosty automated) workflow and offers some basic control.

REST API
Generated by Django Rest Framework, which together with Django-filters, offers a fully queryable REST API. It can 
be accessed from a browser, but also with regular http requests like GET, POST, PUT, DELETE from the commandline
or programs. 

All the atdb services access this REST API from within Python, just like several spin off monitoring and reporting tools.

STATE MACHINE
Every observation (task) always has a specific status, 
which is kept in the central ATDB database on the ‘server’ 
side. 

A cluster of specialized services on the ‘client’ side ‘listen’ 
only for the status that they are interested in, execute their 
task accordingly, and set the observation to another 
status.

Ideally the work flows automatically from initial 
‘specification’ by astronomers all the way to removing the 
data after successful ingest in ALTA. (bottom diagram).

The (right) state transition diagram shows all possible 
states, causes, effects and paths through ATDB.

Context
In practice the atdb_services are 
spread out over different machines 
depending on their specific tasks. 
Some are centralized and centrally 
maintained. Others are installed 
near their specific data and near the 
grey horizon there are user 
maintained scripts.

The ATDB backend is the spider in 
the web of information, safely 
separated from a more dynamic 
client environment.

Clients & Servers
The central column shows the servers for ATDB (Apertif Task Database) and its sister project ALTA (Apertif Long 
Term Archive). Both these systems live on separated (virtual) machines that do nothing more than hosting the 
Postgress database and running the backend applications in their Gunicorn and Nginx webservers. 

All communication with the backends is done through an ‘interface layer’ that wraps the http calls to the REST API 
into higher level Python functions that the atdb services (or any other Python program) can use.

datamodel

database

REST API WebGUI

atdb services

models.py

serializers.py

html templatesviews.py

atdb interface

web server

- Wincc monitoring

- report tooling

- Jupyter notebooks

- cli interface

Interfaces
All communication is by 
http requests.

The main gateway is 
through the http urls which 
map urls to the business 
logic in views. The REST 
API is a special case of 
this mechanism and the 
GUI also uses it.

The `atdb_interface` is a 
convenience package that 
helps access from Python.

urls.py

http urls

clients


