
Web SAMP and HTTPS:
What to do?

Mark Taylor, University of Bristol, UK

Introduction
SAMP, the Simple Application Messaging Protocol, is a standard
developed within the Virtual Observatory to allow communication
between different software items on the desktop. One popular usage
scenario has been enabling one-click transmission of a table or FITS
image from a web page, typically an archive search result of some kind,
to a desktop application such as TOPCAT, Aladin or ds9. This has
worked well for HTTP web pages since the introduction of the SAMP
Web Profile in SAMP 1.3 (2012), but the Web Profile will not work
over HTTPS. This problem was first spotted in late 2014, but is
becoming increasingly apparent as more data providers adopt HTTPS.

This paper presents a summary of the problem and explores some
possible ways forward, for which working prototypes have been
developed: specify a new HTTPS-capable Profile, use a SAMP-capable
helper application, or abandon SAMP over HTTPS.

What is (Web) SAMP?

SAMP is middleware designed to allow loose interoperability between
astronomy applications on a user’s desktop. An example pattern of use
is to send a catalogue from a catalogue analysis tool such as TOPCAT
to an image analysis tool such as Aladin, so that activity in the two
tools can be linked: for instance the catalogue positions can be
overplotted on sky imagery, and if a user indicates a selection in a
colour-magnitude plot in the catalogue tool, the corresponding objects
can be highlighted in the image tool.

The architecture is based on message passing via a central Hub, a
daemon that runs on the user’s machine; the hub may be either
free-standing or embedded in one of the running SAMP-aware
applications. Each SAMP client has to establish two-way
communication with this hub, which it does according to one of the
Profiles defined by the SAMP standard. Initially, only the Standard
Profile was defined, in which clients locate the hub from a file in the
user’s home directory and communicate via bi-directional XML-RPC
calls.

Web applications (typically HTML + JavaScript) sometimes want to
communicate with desktop applications too, but browser sandboxing
means that the Standard Profile cannot be used, so in SAMP v1.3 the
Web Profile was defined, which uses a well-known port, cross-origin
workarounds and message polling to provide the required functionality.

How is Web SAMP Used?
Web SAMP is used in a number of web pages, but in practice SAMP
interactions from web pages nearly all seem to follow the same pattern:
the result of some archive search contains a button like “Send table via
SAMP” or “Send FITS image via SAMP”. This allows the user to take
the result of a query made on the web and insert it directly into a chosen
SAMP-capable desktop application such as TOPCAT or ds9 with one
click. This is a nice convenience, but it’s really just saving the user from
having to save from the browser to disk and then reload into the client
application. There seem to be very few Web SAMP applications that
offer interoperability functions beyond exchanging a table or image∗.
∗ WWT at CXC1 messages sky position; I’m not aware of other cases

What is HTTPS?
HTTPS (secure HTTP) is HTTP layered over TLS (Transport Layer
Security ≈ SSL = Secure Sockets Layer). It enforces host
authentication, so that the client is guaranteed to be talking to who it
thinks it is talking to. To make this work, the HTTPS server requires a
trusted certificate. It also encrypts communications, which is required to
support secure user authentication.

Driven by security concerns∗, data providers are increasingly replacing
their HTTP services with HTTPS.

∗ and possibly buzzword compliance

What’s the Problem?

TL;DR: The Web Profile won’t work for HTTPS

The problem is mixed active content.

If the browser retrieves a web page from a remote host using HTTPS, then that
web page is only permitted to contact other URLs that are also HTTPS, since
accessing HTTP pages would potentially compromise the integrity of the content
that HTTPS assures.

The SAMP Web Profile relies on web applications using the browser-provided
XMLHttpRequest API from JavaScript (or something similar) to communicate
with the Hub at the fixed local URL http://localhost:21012/. If the web
application has been downloaded from an HTTPS service, browser sandboxing
prevents it from talking to that HTTP URL. This is reported by the browser
(if you know where to look) with a message like

Blocked loading mixed active content ‘http://localhost:21012/’

So, can’t we just set up the Hub server to run on the localhost over HTTPS rather
than HTTP? Unfortunately, this is much harder than it sounds. In order to run an
HTTPS URL, a server must be able to present a trusted certificate, that is one
recognised by the browser. If the well-known URL is of the form
https://localhost[:<port>]/<path> then the hub needs a certificate for the
domain “localhost”; Certificate Authorities are not permitted to issue certificates
for localhost (or 127.0.0.1). It would be possible to self-sign a certificate for this
domain, but then the browser would not recognise it (in the absence of browser
security reconfiguration, which normal users probably don’t want and shouldn’t be
encouraged to do). Conceivably one could acquire a certificate from a CA for a
domain that DNS-resolves to 127.0.0.1; that’s more effort than the SAMP user
can be expected to make, but if done by the hub developer, then public/private
key pairs would have to be distributed with the hub, which is bad practice and may
lead to certificate revocation. In principle it would be possible for the user to
acquire a certificate associated with the actual hostname of their machine and
install it into the hub, but again that’s a lot of work and expense for the user, and
there are still problems for the web app to determine what the hostname actually is
in order to contact the server. In short, running an HTTPS service for access on a
well-known local host URL seems to be impossible.

Can we specify an HTTPS Profile?

TL;DR: Yes, but it’s horrible

Since the web application can’t communicate via HTTP, it has to communicate via
HTTPS. Since it can’t talk to the Hub via HTTPS, it has to talk to somebody else
who can forward a message. The solution is for both the web application and the
Hub to communicate with a third service which can act as an intermediary.
We therefore set up a Relay service on an external server that can serve HTTPS
(it has a trusted certificate) and arrange for that to forward messages between the
web application and the Hub. The host of the Relay may or may not be the same
as the host serving the web application in the first place, it doesn’t matter.
Both web-app↔relay and hub↔relay communications have to be achieved using
outgoing HTTPS calls from the client host to the Relay server, so this involves
both the hub and the web application polling for messages that may have arrived
from the other (Web Sockets might be a better solution than polling here, but it
doesn’t change the basic architecture). As soon as the web application starts
running, it can start this polling. One problem remains: how does the Hub know to
go looking for messages the web application may be leaving for it, i.e. when and
where to start polling? One possibility would be a single centralised relay service
for all HTTPS Web SAMP applications, but this would require centralised
infrastructure, a single point of failure, and it would scale badly.

A loophole in current browser security policy allows a hacky solution: although
browsers block mixed active content, they generally permit mixed passive content.
Active content covers executable-code-like items such as Javascript inclusions,
stylesheet references and XMLHttpRequest calls, while Passive content covers inert
items such as embedded video, audio and image tags. We can abuse this laxity to
allow the web application to smuggle a minimal one-way message to the hub by
requesting an image from an HTTP server on a well-known localhost port with a
URL whose text contains enough information to request polling. Specifically, the
web application contains a small (maybe invisible) embedded image with a tag like:

We call this manoevre the Nudge; the same mechanism is not flexible enough to
be used for SAMP communication in general (no information is returned to the
calling code), but it is enough to bootstrap communication with the relay.

1. Browser loads web app

2. Web app starts polling relay

3. Web app nudges hub

4. Hub starts polling relay

What’s wrong with this scheme?

• It’s pretty complicated (difficult to implement; lots to go wrong)

• Communication between two processes on the local host has
to get routed through a potentially distant remote server
(impact on latency, reliability, security)

• Browsers only grudgingly allow mixed passive content:

– Browsers indicate reduced security, e.g. →
– This option may be revoked by future browser security policies

(that is the stated intention of the W3C Mixed Content specification2)

So, What Now?
Here are three possible ways forward.

1. Standardise HTTPS Profile
The HTTPS Profile outlined above has been prototyped and, though it
requires some effort to set up, is known to work. A full specification,
prototype hub and relay software, and example working HTTPS-based
web applications are available3. This implementation has been deployed
in production (it requires the user to run a custom TOPCAT) at SSDC4.

To take this forward, it would be necessary to issue a new version of the
SAMP specification that defines the new HTTPS Profile alongside the
existing Standard and Web Profiles. This involves drafting the
additional text, providing two independent implementations of the new
functionality (the existing prototype is in Java; probably a Python one
would also be required), pushing the new version through the IVOA
Recommendation process, and ensuring that users are working with
HTTPS-Profile-capable Hub implementations by embedding the
updated hub in popular SAMP clients. Data providers adopting the new
profile would need to deploy Relay services alongside their existing web
applications, which makes the process of providing SAMP-capable web
pages more complex. The standardisation process in particular is time
consuming in terms of both effort and elapsed time, especially for a
technically complex enhancement like this. There remain also some
loose ends to tie up in the existing prototype implementation.

Pro: SAMP works equally from HTTPS and HTTP
Con: Considerable effort required; slow to get working
Con: May stop working if browser security policies change

2. SAMP-Capable Helper Application

Since by far the most common use of Web SAMP is to ask desktop
applications to load a VOTable or FITS file, we could get away with
something much simpler than a full SAMP client.

One possibility is providing a helper application for use with browsers
that accepts a filename on the command line and forwards it to running
SAMP-capable desktop clients. The user would either associate the
helper in the browser with suitable MIME types (application/fits,
application/x-votable+xml) or choose it at a browser’s Open
with ... prompt, so that it would get invoked on VOTable/FITS
download. Since this would work with the browser’s standard
mechanism for passing files to desktop applications (download to
temporary file; pass to application on the command line) no strange or
questionable tricks are required.

Sampload, an example such helper application, has been written as a
proof of concept. When invoked at download time, this identifies file
type by examination, connects to the SAMP Hub using the Standard
Profile, then pops up a window offering to send a SAMP
table.load.votable/cdf or image.load.fits message to a
suitable SAMP client if one is running. Once configured in the browser,
it works quite smoothly. No additional infrastructure is required. This
utility is available as part of JSAMP v1.3.65,6.

Pro: Not much development effort required
Con: Some user effort required (helper download and configuration)

3. Do Nothing

We could finally abandon the idea of using SAMP from HTTPS web
pages. Web SAMP will still work from HTTP pages, but not from the
increasing number of pages served using HTTPS. Users of those
services will just have to save files to local disk and reload them into a
suitable local application rather than use a “Send to SAMP” button or
similar. It’s not as convenient, but doesn’t really stop users doing
anything that is not otherwise possible.

This does not mean the end of SAMP, which is still a useful technology
for non-browser-based applications, e.g. TOPCAT↔Aladin
interoperability, especially for more complex interactions than just
exchanging table or image files.

Pro: Easy
Con: No SAMP from HTTPS web pages

Input Welcome!
This poster presents my thoughts along with some experiments I have pursued to explore this problem and possible solutions. If you have ideas on
this topic, please talk to me, or discuss it within the IVOA or on the apps-samp@ivoa.net mailing list. Your opinions are especially welcome if
you’re a data provider who wants to use SAMP over HTTPS; if you have Web SAMP requirements beyond the simple load-a-table-or-image use case;
if you’re a developer who is keen or willing to implement the HTTPS profile (in Python?); if you do or don’t support some of the options presented
here; or if you have a different or better idea for how to move forward on this than those listed here.

1 http://cxc.harvard.edu/csc2/wwt.html
2 https://www.w3.org/TR/mixed-content/
3 http://andromeda.star.bristol.ac.uk/websamp/
4 https://www.ssdc.asi.it/boomerang/
5 https://github.com/mbtaylor/jsamp
6 http://andromeda.star.bris.ac.uk/websamp/sampload.html

Poster 2.7, ADASS XXIX, Groningen, October 2019 $Id: poster.tex,v 1.22 2019/09/24 12:52:01 mbt Exp $

