'ESO, Garching, Germany

Re-engineering data processing for resilience:
ALMA's new message-passing backbone

Alberto Maurizio Chavan,! Rachel Rosen,? Tomas Staig?

°NRAQO, Charlottesville, VA, USA 2

SALMA ADC, Santiago, Chile

Processing of the data taken by the ALMA Telescope occurs over four continents and fourteen timezones. Our initial system to support
iIntegrated data processing was created out of existing and ad-hoc compone
orocessing as much data as possible without manual intervention. Once all t
designed to be more resilient, where individual component failures will

nts connected via a variety of protocols. The design was focused on
ne data and control flows were fully operational, the system was re-
not necessarily affect the overall flow of data. Standardizing on

asynchronous message passing allowed the system to gracefully deal with critical components having limited (or no) availability without loss of

data.

The resulting system, called ADAPT (for ALMA Data Processing Toolchain), will go live for ALMA's Cycle 7 observations.

ALMA Computing Centers

Garching,

e 2 h W R e Rt N
-3 > o~ 3 ' 4:3
. e 4 g
\ '3 P | 7. :
! o
/"ﬁ | N /
: » \ 4 e .
- TN /{ | Tokio,
Charlottesville, i - \ d- JP

USA
Santiago,
CL

ALMA Quality Assurance program relies on
large computational facilities at the Santiago
Central Offices (SCO), Chile and ALMA's
Regional Centers (ARCs)

Pre-ADAPT Data Processing

u
ARC PL
ARC transfer REREESGSS__—-_
area
\ 4
H x
oroducts
v

PL |
S
-
Staging area

PL proaucts
\ 4
AQUA Pipeline S
Agent

neest

PUT /fflag

Data PL Checker
Tracker*
uT /flag GET /obsunit-sets
nit-sets PUT /flag

PUT /flag
PUT /f ag
\ 4
Project DR .
Tracker Assignment*

n 2017 ALMA changed its centralized data
orocessing to a distributed system, putting
together a heterogeneous system including
some ad-hoc user scripts.

ADAPT Goals

* |Improve reliability, availablility

« Fault tolerance and recoverabllity

 Location transparency (components may
be deployed anywhere)

* Visibility (monitoring)

« Jestabillity

* Deployability

High-level Functional Requirements

« Support previous operational model, no
restrictions

 Provide dashboard-like view of all system
elements, their availability, and interactions

* Allow batch tools to report error conditions
and general information

Architectural Principles

Resilient. The system stays responsive In the
face of fallure and can recover gracefully

Elastic: The system stays responsive under
varying workload and can react to changes in
the Input rate by increasing or decreasing the
resources allocated to service these inputs

Message Driven: The system relies on
asynchronous message-passing to ensure
loose coupling, isolation and location transpa-
rency

Point-to-point vs Message Bus

s N\ ' N
Component 1 » Component 2
\, / \, /
A A
\ |
e R)
Component 3 » Component 4

_ J _ J

Point-to-point synchronous communication
can take place only when both partners are
avallable at the same time: examples are
telephone, HTTP, Remote Procedure Calls
— [ight coupling

s N ~ N

Component 1 Component 2

/

<~ %

|

4 N (")

Component 3 Component 4

\ / \ /

Asynchronous communication allows the
receiver to be temporarily unavailable: mes-
sages wait safely until the receiver is ready to
process them.

Examples are message bus, emalil, file transter
— [oose coupling

Note In a message-passing system the broker
becomes a single point of fallure. ALMA
adopted a clustered deployment, distributed
alternatives are also possible.

Message persistence

«sender»
Pipeline Driver

proker PRODUCT_INGESTOR_QUEUE

«listener» $:
Product Ingestor

ingest

@

XTSS_QUEUE

«executor» {
XTSS

>

PERSISTOR_QUEUE

«|listener» $_
Persistor

v

A persistence subscriber takes care of saving
all messages to a database, updating their
states as they progress along their lite-cycle.
While message brokers usually discard any
messages after they have been safely
delivered, ADAPT messages need to be
explicitly persisted to satisty the wvisibility
(monitoring) requirement. A dashboard-type
application presents a number of regularly
updated system views, Iincluding message
lists.

>

Automated integration festing

Implementing ADAPT was generally a
relatively straightforward exercise, and testing
individual ADAPT components was a matter
of exercising the new APIs and ensuring no
regression was introduced. Integration testing
was a much more complex activity: it had to
make sure ADAPT preserves all existing
system functionality while adding value In
terms of the project's goals and requirements.
Automated testing provided part of the
answer: a set of automated end-to-end tests
were created, exercising several meaningful
use cases against the production software.
Test results were recorded and provided a
penchmark to evaluate ADAPT against.

Many other use cases had to be verified
manually, which was extremely labor intensive
out did detect when internal APIs had not
peen speciflied completely or correctly.
Deploying a test system across multiple
ocations requires extensive coordination
efforts as well.

ADAPT will be deployed in production in the
course of Cycle 7, somewhat later than
originally planned.

