
Interactive Figures in the AAS Journals
Peter K. G. Williams peter.williams@aas.org

https://newton.cx/~peter/
Questions? Tweet @pkgw

Interactively Explore Your
Timeseries Data …

American Astronomical Society and Center for Astrophysics | Harvard & Smithsonian

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

Out[2]: TimeSeries length=5

time timecorr cadenceno sap_flux sap_flux_err sap_bkg sap_bkg_err pdcsap_flux pdcsap_flux_err sa

d electron / s electron / s electron / s electron / s electron / s electron / s

object float32 int32 float32 float32 float32 float32 float32 float32

2009-05-
02T00:41:40.338

6.630610e-
04 5500 1.0270451e+06 1.4041933e+02 3.7480554e+03 2.2283568e+00 1.0346376e+06 2.4780812e+02

2009-05-
02T00:42:39.188

6.630857e-
04 5501 1.0271844e+06 1.4042902e+02 3.7491572e+03 2.2283657e+00 1.0347789e+06 2.4594159e+02

2009-05-
02T00:43:38.045

6.631103e-
04 5502 1.0270762e+06 1.4038968e+02 3.7502588e+03 2.2283745e+00 1.0346701e+06 2.4408449e+02

2009-05-
02T00:44:36.894

6.631350e-
04 5503 1.0271414e+06 1.4042482e+02 3.7513606e+03 2.2283831e+00 1.0347365e+06 2.4229922e+02

2009-05-
02T00:45:35.752

6.631597e-
04 5504 1.0271569e+06 1.4039404e+02 3.7524626e+03 2.2283916e+00 1.0347527e+06 2.4051416e+02

from astropy.utils.data import get_pkg_data_filename

 

basename = 'timeseries/kplr010666592-2009131110544_slc.fits'

filename = get_pkg_data_filename(basename)

 

from astropy.timeseries import TimeSeries

 

ts = TimeSeries.read(filename, format='kepler.fits')

ts[:5]

from aas_timeseries import InteractiveTimeSeriesFigure

fig = InteractiveTimeSeriesFigure()

 

markers = fig.add_markers(time_series=ts, column='sap_flux', label='SAP Flux')

fig.xlabel = 'Time (UTC)'

fig.ylabel = 'Flux (electron/s)'

fig.preview_interactive()

fig.save_static('my_figure', format='pdf')

fig.export_interactive_bundle('my_figure.zip')

Everything starts with the data! Here we
download a Kepler light curve and import
it as a new Astropy TimeSeries object —

essentially a table with some extra features.

The first few columns and rows of the table
look like this.

The package aas_timeseries can turn
these data into interactive graphics.
Doing so is easy! The API is similar to

existing libraries like Matplotlib.

Electronic publishing makes it possible to convey scientific content
not just with static images but with interactive, exploratory
visualizations. This is a big opportunity to improve the way we do
science! So, the American Astronomical Society (AAS, publisher of the
Astrophysical Journal, the Planetary Science Journal, and others) is
working to make it as easy as possible to include “interactive figures”
in your articles. This year AAS is launching new Jupyter-based
tools to help you create interactive figures for two common
data types: time series and sky images.

This is the best part! Unfortunately, since
this poster is static, we can't show you how

you can zoom in and out of your data,
phase them on the fly, add and remove

additional datasets on the fly, or configure
the display of the time axes. But you can do

all this and more! Ask the presenter to
show you if they're around, or follow the
link given in the QR code over there ↘

Then, Share Your
Interactives in a Journal …

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

Out[2]: TimeSeries length=5

time timecorr cadenceno sap_flux sap_flux_err sap_bkg sap_bkg_err pdcsap_flux pdcsap_flux_err sa

d electron / s electron / s electron / s electron / s electron / s electron / s

object float32 int32 float32 float32 float32 float32 float32 float32

2009-05-
02T00:41:40.338

6.630610e-
04 5500 1.0270451e+06 1.4041933e+02 3.7480554e+03 2.2283568e+00 1.0346376e+06 2.4780812e+02

2009-05-
02T00:42:39.188

6.630857e-
04 5501 1.0271844e+06 1.4042902e+02 3.7491572e+03 2.2283657e+00 1.0347789e+06 2.4594159e+02

2009-05-
02T00:43:38.045

6.631103e-
04 5502 1.0270762e+06 1.4038968e+02 3.7502588e+03 2.2283745e+00 1.0346701e+06 2.4408449e+02

2009-05-
02T00:44:36.894

6.631350e-
04 5503 1.0271414e+06 1.4042482e+02 3.7513606e+03 2.2283831e+00 1.0347365e+06 2.4229922e+02

2009-05-
02T00:45:35.752

6.631597e-
04 5504 1.0271569e+06 1.4039404e+02 3.7524626e+03 2.2283916e+00 1.0347527e+06 2.4051416e+02

from astropy.utils.data import get_pkg_data_filename

 

basename = 'timeseries/kplr010666592-2009131110544_slc.fits'

filename = get_pkg_data_filename(basename)

 

from astropy.timeseries import TimeSeries

 

ts = TimeSeries.read(filename, format='kepler.fits')

ts[:5]

from aas_timeseries import InteractiveTimeSeriesFigure

fig = InteractiveTimeSeriesFigure()

 

markers = fig.add_markers(time_series=ts, column='sap_flux', label='SAP Flux')

fig.xlabel = 'Time (UTC)'

fig.ylabel = 'Flux (electron/s)'

fig.preview_interactive()

fig.save_static('my_figure', format='pdf')

fig.export_interactive_bundle('my_figure.zip') Once you’ve created the perfect data
exploration experience, it’s easy as pie to
export your setup into the files that you’ll
need to include them in your AAS
manuscript.

The pywwt module has recently acquired
the same kind of functionality as well.

In your AASTeX LaTeX file, a special
“interactive” environment marks your
interactive figure. The output PDF can only
show the static form of your figure, but the
online published article will include the
interactive version.

AAS journals take accessibility seriously: it
is important that your caption describe the
interaction for those who cannot
experience it.

It is also important to cite the software that
you use! AAS Publishing wants to promote
the recognition of software as an essential
category of research output.

In your final published article, readers will
initially see the static version of your
figure. This is important for accessibility,
archival security, and performance for
people with low-power devices or slow
internet connections.

Yet again, this static image can’t show the
best part: when readers click the blue “Start
interaction” button, the static image will be
replaced with the exact same interface you
used to understand your data! Just like you,
they will be able to do things like pan,
zoom, and turn on and off different marker
sets.

By clicking the “Figure data file” button,
readers can download the files that define
your figure — including a CSV table of the
underlying data. No more squinting to
manually read X and Y coordinates off of
somebody else’s plot!

… Or Your Personal Website
Interactive figures are simple HTML
documents that are designed to be
embedded in other pages as iframes. So you
can embed them anywhere you can author
HTML content — for instance, on your
personal website.

Looking for inspiration about what else
you can do with interactive figures? Go to
http://astroexplorer.org/ and search for the
“Interactive Figures” content type to see
what other authors have created!

Want to actually see all of these interactive features in action? Check
out the links at this URL:

https://journals.aas.org/landing/interactive-figures-201909/

Or scan the QR code.

Acknowledgments: Development of the astropy.timeseries and
aas-timeseries modules was supported by the American
Astronomical Society through the AAS Publishing Innovation
Fund. Development of pywwt is supported by the AAS and the
US National Science Foundation (grant 1642446).

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

In [6]:

WARNING: AstropyDeprecationWarning: astropy.extern.six will be removed in 4.0, use the six module d

irectly if it is still needed [astropy.extern.six] 

/a/lib/python3.7/site-packages/reproject/interpolation/core_celestial.py:26: FutureWarning: Convers

ion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it 

will be treated as `np.float64 == np.dtype(float).type`. 

 if not np.issubdtype(array.dtype, np.float): 

Opacity: Stretch: linear

Coarse min: 344 Coarse max: 370

Fine min/m… 355.30 – 365.40

Hydrogen Alpha Full Sky Map Digitized Sky Survey (Color)

from pywwt.jupyter import WWTJupyterWidget

from astropy import units as u

from astropy.coordinates import SkyCoord

from astroquery.skyview import SkyView

img_list = SkyView.get_images(position='SN 2011FE', survey='2MASS-K', pixels=500)

my_hdu = img_list[0][0]

wwt = WWTJupyterWidget()

wwt

img_layer = wwt.layers.add_image_layer(my_hdu)

img_layer.controls

wwt.layer_controls

sn11_coord = SkyCoord.from_name('SN2011fe')

circle_annot = wwt.add_circle(sn11_coord, radius= 0.01 * u.deg)

… And Your Sky Images
The same way that the aas_timeseries

package lets you interactively explore time-
based data, the AAS WorldWide Telescope
(WWT) and pywwt, its Python frontend, let
you interactively explore images of the sky.

In [5]:

In [6]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

from astropy import units as u

small_ts = TimeSeries(time_start='2016-03-22T12:30:31', time_delta=3 * u.s, n_samples=10)

small_ts['flux'] = [10, 11, 9, 10, 2, 3, 5, 12, 11, 10]

small_ts['error'] = [2, 2.5, 2, 1.5, 2, 2, 1.5, 1.5, 2., 2.5]

from aas_timeseries import InteractiveTimeSeriesFigure

fig = InteractiveTimeSeriesFigure()

 

markers = fig.add_markers(time_series=small_ts, error='error', column='flux', label='Flux')

markers.color = 'red'

 

line = fig.add_line(time_series=small_ts, column='flux', label='Flux')

hrange = fig.add_horizontal_range(8, 11, label='Horizontal Range')

text = fig.add_text(time=small_ts.time[1], value=5, text='Here be dragons', label='Text')

 

fig.preview_interactive()

 

 

 

 

 

 

 

 

 

fig.save_static('my_figure', format='pdf')

fig.export_interactive_bundle('my_figure.zip')

 

You can add all sorts of annotations to your
plots, including error bars, textual notes,
horizontal and vertical ranges, and so on.

Not shown here, you can also create
predefined views that emphasize different
parts of your data. No more reproducing
your data in multiple figures to convey

different important features!

Once again, if this wasn’t a static,
preprinted poster, you could navigate this
dataset and its presentation interactively.

Here, we use the SkyView web service to
download a 2MASS image centered on the

location of SN 2011fe.

Here too, this printed poster isn’t able to
show you the best part of this tool:

interactive image exploration right inside
your Jupyter notebook!

Widgets linked to the WWT view allow on-
the-fly control of how your data are

visualized.

You can also control the background
imagery that provides the context for your

data, and add the usual complement of
annotations.




