
Compilers, languages, options, and astronomical images
Or

This code is over 1,000,000 times faster than that code*
(*a deliberately attention-grabbing headline claim – not actually untrue, but really rather misleading)

Keith Shortridge – Keith@KnaveAndVarlet.com.au

Introduction: This poster describes a series of tests intended to see how well 12 
different programming languages handle access to individual elements of 2-dimensional 
arrays - the bread and butter of astronomical data. Perhaps the biggest surprise is the 
range of execution speeds that was found. Some languages are much faster than others. 
Many compilers do not optimise by default, and there was one case where simply compiling 
with full optimisation sped up a test program nearly 500 times. The slowest test actually ran 
over 1.5 million times slower than the fastest, but even without that extreme outlier, the 
range of speeds covered many orders of magnitude.

The test: The test used was trivially simple. Pass a 2D array to a subroutine and have that subroutine add 
the sum of its two index values to each individual element . The C++ code for the body of the subroutine is 
shown below. The idea was to force the compilers/interpreters to access each element individually, rather than 
making it easy for them to use built-in vector operations to speed things up. However, some compilers turned 
out to be really quite ingenious in how they handled this.

Caveats: Benchmarking is a black art, and the results shown here will not apply to your code. They 
apply to one set of test programs, solving one specific problem, run on one machine with a specific set 
of compilers and interpreters. Successive runs of the test produced slightly different results, and even 
different overall ‘winners’. On a modern machine, it is impossible to calculate how fast a given instruction 
will execute - it depends on the state of the cache, on the clock speed - which can be boosted or 
reduced as the machine heats up - and goodness knows what else. All the code used was written by 
one person, whose experience with the different languages ranges from pretty proficient to complete 
beginner. Not all this code will represent the best each language can achieve.

Some Test-specific notes
Assembler: Two years ago, in assembler I could beat the clang and gcc compilers by 
about a factor two on this problem. But I can’t beat them now. However, being able to 
read assembler can help; I spotted the C++ -march=native flag through wondering 
why the C++ code wasn’t using wider vectors, and got a factor 2 improvement.
C/C++: C has rectangular multi-dimensional arrays, but you can’t pass them easily to 
subroutines so the subroutine can do the index arithmetic needed. You can do that 
arithmetic yourself, as the ‘C raw’ code does, or use the scheme used in ‘Numerical 
Recipes in C’ (an ArrayManager class included in the code packages up this NR 
scheme conveniently). Or use the Boost library, which provides multi-dimensional 
arrays defined through templates and relies heavily on compiler optimisations for 
speed. Or use STL vectors of vectors to form 2D arrays.
Fortran: Has always handled multi-dimensional arrays well, but it was only with 
Fortran 90 that it was able to allocate them dynamically.
Java: Bizarrely, the Java implementation I used generated slower code for to add ’Iy + 
Ix’ to an element than it did to add ‘Ix + Iy’. Optimisation comes from its JIT interpreter.
Javascript: Not shown in the table, but Javascript ran even faster in Safari.
Perl/PDL: PDL adds IDL-like facilities for Perl, including numpy-like vector and array 
operations. It’s slow at single-element operations, (as is numpy, to a lesser extent).
Python: ‘Raw’ is using numpy to access individual array elements – something it was 
not intended for. ‘Vectors’ uses numpy vector operations to get the required effect.
R: This supplied the outlier result. I tried to bypass an array copy tine by using a 
‘reference object’. A quirk of R’s ended up copying the array each time any element of 
it was modified. A cautionary tale – some attempts to optimise can backfire. ‘Outer’ is 
using vector operations rather than individual array access.
Swift: The original Swift compiler was very slow accessing 2D arrays, but the latest 
versions have improved enormously. 

How should I interpret these results? The chart shows the relative execution times for each test, with the fastest scaled to 1. A little arbitrarily, the fastest results are green, the next fastest band 
are yellow, slower ones are orange and the slowest set are red. The one outlier is purple. This really only tells you how well different languages handled this one, contrived, problem. At high optimisation levels, 
the C++ and Fortran compilers used vector instructions to address this problem in surprisingly efficient ways, which may not always be possible - all the green entries do this. At -O1 optimisation the C compilers 
are generating code that really does access individual array elements, but they do so very efficiently. In the chart, these are all in the yellow band. This may be a realistic target for most problems, so yellow may 
represent a sensible attainable ‘standard’ of sorts. Some orange results, although slower, are quite respectable, and may represent a good trade off for the convenience of the language in question. Red entries 
indicate combinations not really suited to this sort of problem.

Summary:
• The range of execution times is huge.
• Optimisation options make a big difference.
• Most compilers don’t optimise by default.
• Template code is very slow if unoptimised.
• Some obscure optimisations can help.
• Modern mature compilers are really good.
• Writing assembler isn’t worth the effort.
• But reading assembler may be useful.
• Compiled code beats interpreted code. Duh.
• Libraries like numpy speed things up a lot.
• Memory access can be a bottleneck.
• C/C++ is fastest, Fortran a whisker behind, 

(and most languages can call C code).
• Your program will have different trade-offs.

Vector instructions: Most 
modern processors support vector 
processing instructions, operating 
on a set of numbers in one go. The 
X86 processor used for these tests 
supported the AVX 256-bit (8 ‘floats’ 
at a time) instructions. Most 
processors support 128-bit vector 
instructions, and at levels above 
-O1 or -O2 the C++ and Fortran 
compilers tested will use these if 
possible. The -march=native flag 
will make a compiler use the best 
the current processor has, which 
may speed things up but may not 
run on lesser processors. I was 
surprised to see some compilers 
work out a way to use these on this 
problem. To see how they did this, 
look at the comments in the hand-
coded assembler, which does the 
same.

Is this a fair test? Probably not. The test code used here deliberately tried to test how well a system 
handled access to individual elements of an array, in a way that would be difficult for a compiler to optimise. 
For example, nested loops that simply copied each element of a 2D array into another array could be turned 
into a single call to an optimised routine like C’s memcpy() that just copies data regardless of its structure, 
and that wouldn’t have tested access to individual array elements. However, it means that the test is probably 
unrepresentative of many real-world problems, and it certainly allows some languages to shine more than 
others. In particular, it really penalises interpreted languages like Python, which generally get their speed 
from packages like numpy, which can work on large blocks of data as quickly as on they do on one element. 
If your problem is a good match to the bulk processing operations of libraries like numpy, you will find these 
much more efficient than they may appear here. It’s also unfair to new languages – compilers for C/C++ and 
Fortran have years of development behind them. The evolution of the Swift compiler shows the gains that 
can come with just a few years of work. For example, optimised Julia is orange in the chart above, but is 
actually very close to the non-vectorised results from C/C++, as is optimised Swift.

The code: All the code, with comments, used in these tests – and more – is available on 
GitHub, in the repository: KnaveAndVarlet/ADASS2019. Or send me an e-mail. Or find me 
and ask about it. There should also be a listings folder close to this poster.

Rectangular multi-
dimensional arrays: 
Disappointingly, few languages 
really support ‘rectangular’ multi-
dimensional arrays. The older 
languages did (Fortran, PL/1, Algol, 
Pascal - although Pascal spoilt it by 
making it hard to pass them to 
subroutines). The trend for some 
time has been to support ’arrays of 
arrays’, where a 2D array is an 
array of 1D arrays – not all of which 
have to have the same number of 
elements. C/C++ can create 
‘rectangular’ arrays, but makes 
passing them to subroutines 
awkward. Julia is a recent language 
that supports rectangular arrays. 
One feels native rectangular 
support for 2D arrays should make 
it easier for compilers to optimise
code.

Vector libraries. Some tests (‘vectors’ 
for Python, ‘outer’ for R) use built-in array 
operations to get the same results as the 
other tests, but far faster than using access to 
individual elements. The code looks quite 
different, and doesn’t test access to individual 
element, which was the original intention. But 
it shows that use of such facilities can speed 
up interpretive languages hugely – which is 
why they exist. How well this works depends 
on how well the problem can be reformulated 
to use the array operations available. (Note 
that the programmer has to solve this 
problem, which is not the same as having a 
compiler use vector instructions to speed up 
code written using single-element access.)

Nearly 90 tests, coded in 24 ways in 
12 languages, with 13 compilers/ 
interpreters and a variety of 
optimisation options.

Which language did you expect 
to be fastest?

Did you expect this range of 
execution times?

What language do you use?

What optimisation flags do you 
use?

Personal surprises:
o The enormous range of speeds 

measured.
o Fortran was marginally slower than C/C++.
o The speed of Javascript.
o Failing to beat C++ using assembler.
o Just how good the C++ compilers are

now.
o How few compilers optimise by default.
o How fast C++ ‘vectors of vectors’ were.
o The overheads with R reference objects.
o How simple this was to code in Julia (for

an ex-Fortran user).
o How much memory access can slow 

things down.
o How slow ‘numpy raw’ - one element at

a time - was.
o Just how sensitive to optimisation level

C++ Boost code was.
o How long it took to do all this!


