
There are many wonderful instruments producing exciting and varied science that each have their own ways of reducing data even though
the underlying processes are based on the same principles. This leads to effort wasted on rewriting code that has already been written,
inefficient processes using archaic infrastructure, and increased complexity in trying to reproduce refereed work. This poster will analyze
the effort to develop a generalized pipeline framework to facilitate the reduction of W. M. Keck Observatory data with a unified approach
while allowing each instrument’s unique curiosities to be worked into the reduction process. The modular approach will allow pipeline
developers to reuse code for specific processes that are common among data reductions. The Framework will utilize many astronomy tools
in Python in order to reduce the amount of code required to be written. Finally, the poster will examine the approach being taken to record
the process history for scientific reproducibility.

Keeping Things Consistent: 
Developing a Framework to Unify Future W. M. Keck Observatory Data 

Reduction Pipelines
M. K. Brown, J. A. Mader, L. Rizzi, S. H. Kwok, J. Walawender (WMKO)

Framework Process Workflow

The main goal of the pipeline framework is to reduce the effort needed from the organization to maintain pipeline support for users who
may not be regular users of WMKO data. By having a single template for what a pipeline should look like, debugging the application
becomes much easier for WMKO staff who might need to support it. It also makes execution of pipelines easier for users as well. With a
single entry point for reduction with multiple pipelines, end users only need to learn a single tool for all of WMKO data reduction! In
order to facilitate this, a common set of base classes were created that allow developers to write new modules for new instruments that
can easily be slotted into the pipeline. Since the framework only calls these predefined functions, if the pipeline is written properly it will
always be called properly. However, since only the handle is pre-defined, the pipeline developers have ultimate control over what
happens in the execution of the function. Moreover, since the Framework is constantly updating a global state of the reduction in the
context, it makes it easy to trace the steps taken in order to verify the results.

If you want to learn more, you can check out the code at https://github.com/Keck-DataReductionPipelines/KeckDRPFramework
For an example implementation, check out https://github.com/Keck-DataReductionPipelines/KCWI_DRP

Framework Codebase Ecosystem

Example of Recipe Transition


