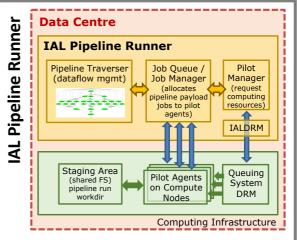

Scheduling the Euclid Pipeline in the Ground Segment Processing Infrastructure

Martin Melchior⁽¹⁾, Simon Marcin⁽¹⁾, Christophe Dabin⁽²⁾, Marco Frailis⁽³⁾, Mark Holliman⁽⁴⁾, Andrey Belikov⁽⁵⁾

(1) University of Applied Science of Northwestern Switzerland, Switzerland, (2) CNES Toulouse Centre National d'Etudes Spatiales, France, (3) INAF - Osservatorio Astronomico di Trieste, Italy, (4) University of Edinburgh, United Kingdom, (5) University of Groningen, Netherlands


Euclid's Ground Segment Architecture Central archive services Distributed data centers (distributed data storage and processing infrastructure) **Euclid Archive** System (EAS) Central Distributed Meta-Data File Archive Database Infrastructure **Abstraction Layer (IAL)** Meta Scheduler **Pipeline Runner** Integrates the data centers into a uniform processing system. It acts as a scienceagnostic intermediary Computing between archive and Infrastructure

Euclid's Pipeline Framework

Defines the details Package Definition euclidwf.framework.taskdefs import Executable, Input, Output, ComputingResources of the tasks executed as single inputs=[Input("field")], pipeline steps (e.g. input/output **Pipeline Script** slots, exec. cmd) rallel(iterable='image') correct(quadrant, master_flat): dark_corr, dark_corr_quality = \ vis_correct_dark(quadrant=quadrant, master_dark=master_dark) flat_corr, flat_corr_quality = \ vis_correct_flat(quadrant=dark_corr, master_flat=master_flat) return flat_corr, dark_corr_quality, flat_corr_quality return flat_corr_quality. Defines the pipeline dataflow. Sequential flows peline(outputs=('corrected_field', 'quality')) correct_quadrants[field, master_dark, master_j quadrants = vis_split_quadrants[field=field] quadrants_corr = correct[quadrant-quadrants, master_dark-master_dark, master_fial-mast field_corr, quality = vis_combine_quadrants(ir return field_corr, quality) and parallel split (data parallelism) are supported. **Dataflow** Uses python interpreter Graph for translating the pipeline script in a dataflow graph. Provides the basis for the pipeline runner to manage the pipeline workflow and to create the payload jobs.

Euclid Archive Data Centre System (EAS) Central **AL Meta Scheduler** File Meta-Data Archive Database Communicates with EAS: **IAL Meta** Fetches and updates Scheduler pipeline processing requests. Staging Area Transfers input and (shared FS) output data between Computing archive and staging area Infrastructure (shared FS)

- Adopts dataflow paradigm to manage pipeline workflow (at data centre level).
- Abstracts the systems setup at the different data centers: DRM (IALDRM), FS, VM
- Adopts pilot job concept for more flexible and efficient job submission: Submits pilot agents to DRM, once started on compute nodes asks job manager for payload jobs and executes them.

Technologies

- Pipeline Runner: microservices architecture; python 3, twisted, sqlalchemy, flask
- Meta-Scheduler: finite state machine, multithreaded; java 8, spring boot, hibernate, jaxb
- IALDRM: wrapper scripts (python), supports SLURM, PBS, SGE, local, (...)

Both components passed several software development cycles and have been successfully tested at scale in a series of Euclid ground segment challenges.