
Efficient Data Processing for
Large Image Cube Visualisation

A. Comrie1, 2, R. Simmonds1, 2, A. Pinska1, 2, A. R. Taylor1, 2, 3

1Inter-University Institute for Data Intensive Astronomy 2University of Cape Town 3University of the Western Cape

Author Information
Dr. Angus Comrie is a visualisation
software developer at IDIA, and the
lead developer of the CARTA project.
Feature requests are welcome!

CARTA Software Package
The Cube Analysis and Rendering Tool for Astronomy (CARTA) is a server-
client software package for efficiently visualising and performing analysis on
large image cubes. It is developed by a collaboration from the four institutes
shown below. Version 1.3 of CARTA will support contour overlays.

Utilising Modern Web Technology
WebAssembly allows us to compile custom code and common
libraries written in c/c++, and execute them in the browser at near-
native speeds. CARTA uses this for ZFP, Zstd and AST libraries.

WebWorkers run JavaScript or WebAsesmbly code in a separate
thread, allowing us to offload compute-intensive tasks to other CPU
cores. CARTA uses this for tile decompression.

WebGL allows us to utilise GPU-acceleration when rendering in the
browser, by writing shaders in the GL shader language (GLSL).
CARTA uses WebGL shaders to render image and contour data.

Tiled Rendering

Images are delivered to the frontend in a series of fixed-size tiles. Each tile
belongs to a layer, with each subsequent layer doubling the number of tiles
in each dimension. As the user zooms into the image, tiles from higher-
resolution layers are requested from the backend. Only those tiles that are
visible in the frontend are sent. Tiles are cached by the frontend in both
system memory (as compressed data) and GPU memory (as uncompressed
textures) for efficient rendering, and to prevent duplicate tile requests.

https://cartavis.github.io

https://github.com/CARTAvis

See P4-3
for details

Introduction
Image cubes created by the latest generation of telescopes are often too large
to efficiently visualise on portable or desktop hardware. Instead, a remote
visualisation system must be used. We present an approach developed to
improve the efficiency of server-client visualisation tools. This approach has
been implemented in the Cube Analysis and Rendering Tool for Astronomy
(CARTA). We utilise a backend server with fast access to image data,
communicating with a browser-based frontend app through a WebSocket
connection for bi-directional streaming of control commands and data.

Compressing, delivering and
rendering images

When visualising large image cubes, a single channel is loaded into memory
at a time. The backend sends only the sections of the image that are visible
in the user’s viewport, down-sampled to an appropriate resolution. Image
data is sent as lossy compressed floating-point data using the ZFP library.
Image tile are prepared and compressed in parallel.

Calculating, compressing, delivering
and rendering contours

Instead of rendering contours to a lossy image format before delivery to the
frontend, contour polylines are generated by the backend across multiple CPU
cores. A two-pass Gaussian filter is applied in parallel prior to contour tracing.
Contour vertices are quantised to integers, before delta-encoding and byte
shuffling, in order to drastically improve compression ratios with Zstd.

Tiles are decompressed in parallel using WebWorker threads. After loading
tiles into GPU memory as floating-point textures, WebGL shaders are used
to apply clip bounds, scaling and colour maps, transforming the floating-
point data into a colour image. If the render configuration changes, the
image is updated instantly without requesting new data from the backend.

angus@idia.ac.za

https://github.com/veggiesaurus

The frontend decompresses and decodes vertices using WebAssembly code.
WebGL shaders are used to accelerate the rendering of contour polylines
after they are loaded into GPU memory. GPU-accelerated frontend rendering
allows the user to alter the render config of contours without requiring them
to be re-generated or re-sent by the backend.

