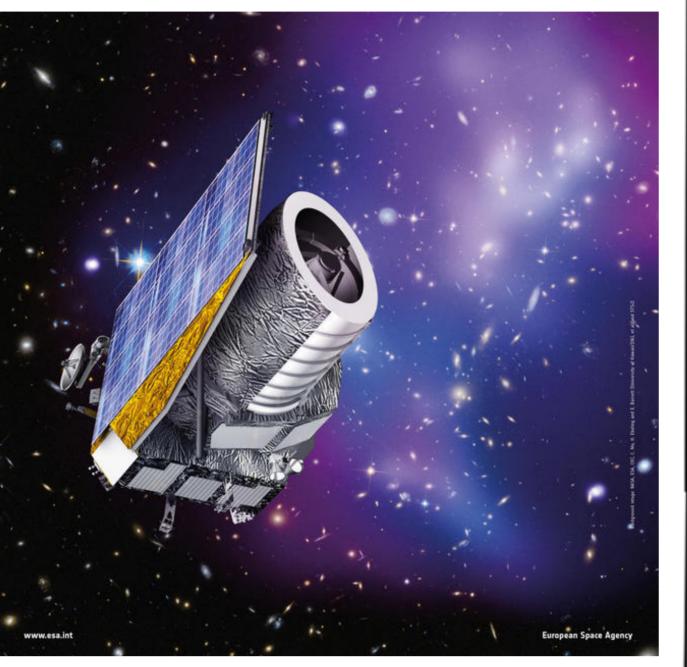


Galaxy Image Simulation Using Progressive GANs

Mohamad Dia,¹ Elodie Savary,² Martin Melchior,¹ Frederic Courbin² ¹FHNW, Switzerland - ²EPFL, Switzerland

1. Euclid Space Mission

- Space-based astronomy and astrophysics telescope:
 - Understand the accelerated expansion of the universe.
 - Investigate dark matter and dark energy.



4. Generative Adversarial Networks

- Two competing neural networks:
 - Generator samples simulated (fake) images from random latent space.
 - Discriminator plays the role of adaptive loss.
 - Joint optimization in a two-player minimax game.
- $\begin{array}{c} 0/1 & \text{Loss:}\\ \text{real or fake?}\\ \hline \\ D & \text{Discriminator}\\ \hline \\ Real image \ x & G(z) & \text{Fake image} \\ \hline \\ \hline \\ G & G & Generato \\ \hline \end{array}$

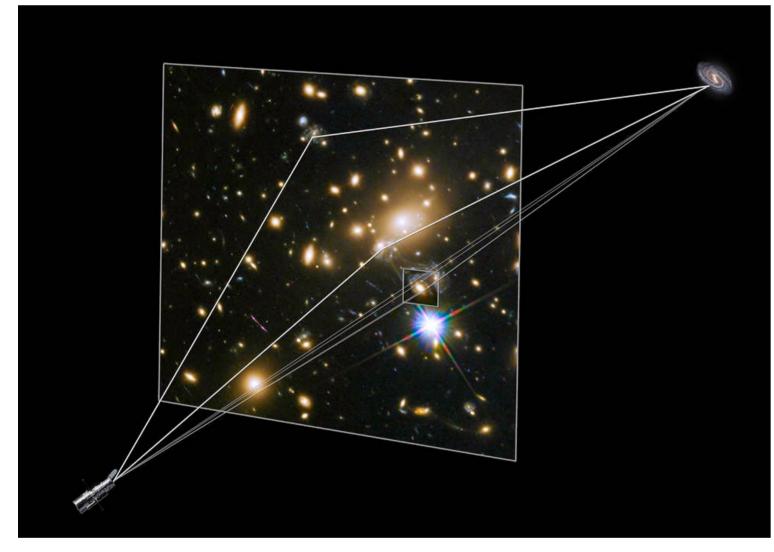
- Silicon Carbide1.2m mirror telescope.
- Extragalactic sky coverage with 15000 square degrees.
- Visible and near-infrared imaging.
- Featuring more than 10 billion sources, 10's of Petabytes.

© ESA

- Scientific analysis by the Euclid Consortium that includes more than 1400 scientists.
- Scheduled for launch in June 2022 by ESA.

2. Gravitational Lensing

• Relativistic curvature in space-time due to the presence of matter.



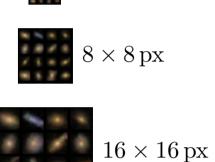
Deflection of light coming from distant galaxy (source) by the massive intermediate object (lens). z Latent vector

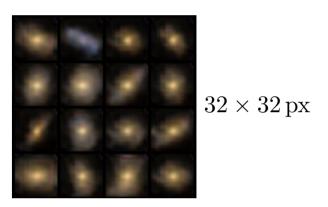
- Standard version is hard to train with unstable behaviour, convergence issues, mode collapse, etc...

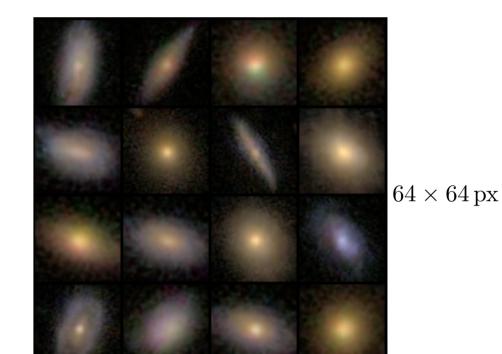
5. Progressive Training and Wasserstein Loss

 $4 \times 4 \,\mathrm{px}$

- Progressive increase of the resolution:
 - Start with low resolution (easy to train) and keep on growing both networks (G & D) by adding layers synchronously and smoothly.
 - Convolutional layers with mirror design.
 - More stable and faster training.
 - Wasserstein distance with gradient penalty to mitigate vanishing gradient.
 - Weight scaling and pixel-wise normalization to avoid unhealthy competition between G and D.



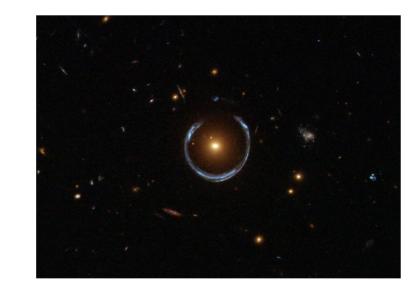




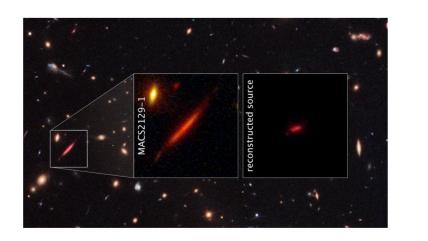
© NASA & ESA

- Strong gravitational lensing:
 - Duplicate images, arcs, Eistein rings.
- Weak gravitational lensing:
 - Shear (tangential stretch) and convergence (magnification).

- The lensing effect varies with the distance, alignment, mass, and shape of the source and lens.



© NASA/ESA Hubble



© NASA/ESA Hubble

3. Simulated Images of Galaxies

Generator	Output Dimensions	Dis	scriminator	Output Dimensions
Latent Space		RC	GB Reading	
Input latent vector	$1 \times 1 \times 256$	Ir	nput image	$64 \times 64 \times 3$
Conv 4×4	$4 \times 4 \times 256$	C	Conv 1×1	$64 \times 64 \times 16$
Conv 3×3	$4 \times 4 \times 256$	4	th Progress	
1 st Progress		Ō	Conv 3×3	$64 \times 64 \times 16$
$\overline{\text{Conv } 3 \times 3}$	$8 \times 8 \times 128$	C	Conv 3×3	$64 \times 64 \times 32$
Conv 3×3	$8 \times 8 \times 128$	3	rd Progress	
2 nd Progress		ō	Conv 3×3	$32 \times 32 \times 32$
$\overline{\text{Conv } 3 \times 3}$	$16 \times 16 \times 64$	C	Conv 3×3	$32 \times 32 \times 64$
Conv 3×3	$16 \times 16 \times 64$	2	nd Progress	
3 rd Progress		Ō	Conv 3×3	$16 \times 16 \times 64$
$\overline{\text{Conv } 3 \times 3}$	$32 \times 32 \times 32$	C	Conv 3×3	$16 \times 16 \times 128$
Conv 3×3	$32 \times 32 \times 32$	1	st Progress	
4 th Progress		Ō	Conv 3×3	$8 \times 8 \times 128$
$\overline{\text{Conv } 3 \times 3}$	$64 \times 64 \times 16$	C	Conv 3×3	$8 \times 8 \times 256$
Conv 3×3	$64 \times 64 \times 16$	Cos	st Calculation	
RGB Extraction			$Conv 3 \times 3$	$4 \times 4 \times 256$
Conv 1×1	$64 \times 64 \times 3$	C	Conv 4×4	$1 \times 1 \times 256$
		C	Conv 1×1	$1 \times 1 \times 1$

6. Extensions

- Exploiting side information in a supervised or semi-supervised fashion:
- Use class labels when available through class conditioning.
- Feed class labels to both G and D (conditional generation and
- Calibration and bias detection for shape measurement algorithms (weak lensing) require simulated images with known ground truth lensing.
- Training neural network classifiers (e.g. CNN) to detect strong lenses requires simulated images in order to mitigate class imbalance in the current datasets and avoid false-positive type of error.
- Model-driven v.s. data-driven simulation:
 - Fitting an analytic/parametric profiles using simple model is not able to generate complex morphologies.
 - Generative networks from machine learning can learn the data distribution and generate more realistic images (e.g. VAE, GAN).

conditional discrimination).

- Feed class labels only to G (conditional generation) and use D for classification (discrimination with auxiliary classification).
- Improve the image quality and increase the diversity.
- Control the generation task.
- [1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative Adverserial Networks. *In NeurIPS*, 2014.
- [2] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. Improved Training of Wasserstein GANs. *In NeurIPS*, 2017.
- [3] Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. *In ICLR*, 2018.
- [4] Mirza, M., and Osindero, S. Conditional Generative Adversarial Nets. ArXiv, 2014.
- [5] Odena, A., Olah, C., and Shlens, J. Conditional Image Synthesis with Auxiliary Classifier GANs. In ICML, 2017.
- [6] Ravanbakhsh, S., Lanusse, F., Mandelbaum, R., Schneider, J. G., and Póczos, B. Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. *In AAAI*, 2017.