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1. Euclid Space Mission

• Relativistic curvature in space-time due to the presence of  matter.                          

4. Generative Adversarial Networks

5. Progressive Training and Wasserstein Loss

• Progressive increase of  the resolution:                   

- Start with low resolution (easy to train) and 
keep on growing both networks (G & D) by 
adding layers synchronously and smoothly. 

- More stable and faster training.

6. Extensions

• Exploiting side information in a supervised or semi-supervised fashion: 

- Use class labels when available through class conditioning.  

- Feed class labels to both G and D (conditional generation and 
conditional discrimination).

- Feed class labels only to G (conditional generation) and use D for 
classification (discrimination with auxiliary classification).

- Improve the image quality and increase the diversity.
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• Space-based astronomy and astrophysics telescope:                  

- Understand the accelerated 
expansion of  the universe.

- Investigate dark matter and dark 
energy.

-  Silicon Carbide1.2m mirror 
telescope.

- Visible and near-infrared imaging.

- Scheduled for launch in June 2022 by ESA.

- Extragalactic sky coverage with 
15000 square degrees.

- Featuring more than 10 billion 
sources, 10’s of  Petabytes.

- Scientific analysis by the Euclid Consortium that includes more than 
1400 scientists.

2. Gravitational Lensing
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- Deflection of  light coming 
from distant galaxy (source) 
by the massive intermediate 
object (lens).

- The lensing effect varies with 
the distance, alignment, 
mass, and shape of  the 
source and lens.

• Strong gravitational lensing:                         

- Duplicate images, arcs, Eistein rings.

• Weak gravitational lensing:                         

- Shear (tangential stretch) and 
convergence (magnification).
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3. Simulated Images of  Galaxies

• Calibration and bias detection for shape measurement algorithms (weak 
lensing) require simulated images with known ground truth lensing.                       

• Training neural network classifiers (e.g. CNN) to detect strong lenses 
requires simulated images in order to mitigate class imbalance in the 
current datasets and avoid false-positive type of  error.                           

• Model-driven v.s. data-driven simulation:                          
- Fitting an analytic/parametric profiles using simple model is not 

able to generate complex morphologies.
- Generative networks from machine learning can learn the data 

distribution and generate more realistic images (e.g. VAE, GAN).

x

z

G(z)

0/1

G

D

Latent vector

Generator

Discriminator

Real image

Loss: 
real or fake?

Fake image

• Two competing neural networks:             

- Generator samples simulated (fake) images 
from random latent space.

- Discriminator plays the role of  adaptive loss.

- Joint optimization in a two-player minimax game. 

- Standard version is hard to train with unstable 
behaviour, convergence issues, mode collapse, etc…

- Wasserstein distance with gradient penalty 
to mitigate vanishing gradient.

- Weight scaling and pixel-wise normalization 
to avoid unhealthy competition between G 
and D.

- Convolutional layers with mirror design.
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- Control the generation task.


