
Automated SpectroPhotometric Image REDuction
Marco C Lam*, Robert J Smith & Iain A Steele
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, UK L3 5RF
* c.y.lam@ljmu.ac.uk

Standard Spectrum

Sensitivity Curve

Output Spectrum

Wavelength
Calibration

Background
Time-domain Astrophysics is entering its golden age with a num-
ber of discovery telescopes coming online, generating high qual-
ity data with high cadence in huge volume. Rapid follow-up of
various transient objects found from these surveys are essential
to provide crucial astrophysical interpretations. As part of the Eu-
ropean Commission Horizon 2020, the work package WP13 of
OPTICON aims to develop and provide a suite of publicly availa-
ble long-slit spectral data reduction software to facilite rapid sci-
entific output.

This software has
made use of:

RASCAL, SpectRes, JS9, AstroSCRAPPY, ccdprocs, npm, electron-compile, setuptools & their dependencies

Liverpool
John Moores

University

STFC
Newton Fund

OPTICON
Horizon 2020

Liverpool
Telescope

ASPIRED is a low/medium resolution spectral
data reduction software written in Python 3, part
of the three concurrent developments with the
GUI gASPIRED and the wavelength calibrator
RASCAL (Poster P10-37). ASPIRED provides
a scripting mode of data processing; the
gASPIRED sits at a high level, but sharing
the same plotting library powered by Plotly.
Interactivity is enabled with JS9 and JQuery
running in an Electron application. It allows
cross-platform development with a single
codebase for Linux, Mac and Windows.

Input Spectrum Basic ImageReduction routines are available to
enable rapid data processing with a single interface.

It provides arithmetic level of field-flattening. It is
not the intention of this software to provide high

quality flatfielding routines, for example, image
rotation and fringe removal. These functions
are not in the current development plan.

science = ImageReduction(
 ‘file.list’)

 science.reduce()

gASPIRED

ASPIRED

RASCAL

Aperture TracingTwoDSpec is an object for 2D spectral image manip-
ulation, it performs spectral identification, aperture
tracing and aperture extraction. Spectral tracing
uses spline or polynomial fit. Multiple spectra can
be found and traced simultaneously. Example
for the simple codes that users are required to
use:

science2D = TwoDSpec(science.data)
science2D.ap_trace(display=True)

Aperture Extraction The traced spectrum is stored as a property of the
 TwoDSpec object. Currently, only the brightest spec
 trum will be extracted although multiple spectra
 can be traced simultaneously. An optimal or
 aperture extraction can be perform along the
 trace. The black box indicates the region
 where the signal is extracted; the red boxes
 are the regions used for fitting the background
 flux. The extraction contains the spectrum,
 uncertainty, sky and the signal-to-noise ratio.

 science2D.ap_extract(display=True)

Wavelength calibration is a difficult task. In this work
package of automated spectral data extraction and
calibration, the entire calibration process has spun
off to a separate project to tackle the problem in-
dependently. It is designed to be a completely
stand-alone module that provides a suite of
API in a similar style. The figure on the right
shows the preliminary diagnostic plot for the
calibration. Please see poster P10-37 for more
information.

wavecal = RASCAL.calibrator.fit(‘arc’)

Standard stars available from iraf and ESO webpage
 are all stored in the software. They can be retrieved
 with the StandardFlux object by passing the
 name of the standard star. A basic regex algo-
 rithm will prompt users with the closest match
 if there is not an exact match.

 fluxcal = StandardFlux(
 target=’hiltner102’,
 group=’irafirs’)
 fluxcal.load_standard()
 fluxcal.inspect_standard()

A OneDSpec object can be created with the wave-
length calibration objects, the TwoDSpec objects
of the target and the standard stars and Standard-
Flux object. This creates a sensitivity curve if the
standard star is provided.

spec1D = OneDSpec(
 science2D, wavecal, standard2D,
 wavecal_standard, flux_cal)
spec1D.apply_wavelength_calibration()
spec1D.compute_sencurve(display=True)

By applying the sensitivity curve to the spectrum, the
 final flux and wavelength calibrated spectra of the
 target, standard, sky signals and uncertainties are
 produced. Further 1D spectral data manipulation
 and analysis will require external packages.
 The example spectrum shown here is from
 the low resolution spectrograph SPRAT on
 the Liverpool Telescope. The star is a dM1.75
 main sequence star with a sub-solar metallicity.

 spec1D.apply_flux_calibration()
 spec1D.inspect_reduced_spectrum()

gASPIREDgASPIRED, being the graphical plugin of the soft-
ware, is built with Electron, chosen for its popularity
in the industry compared to the equivalent ones
for Python. A medium to long term development
of this major dependency is guaranteed. The
interactive spectrum identification is handled
with the JS9 display, while the rest are done
with jQuery. The visualisation is done with Py-
thon-plotly, and it sends a JSON-string to be
rendered by plotly.js and display on Electron.

 Double Click the Application Icon

