
Refactoring SCHED from Fortran to Python step-by-step.
Bob Eldering, Joint Institute for VLBI ERIC (JIVE)

SCHED
SCHED is a program for scheduling Very Long Baseline
Interferometry (VLBI) observations. The input to
SCHED is a text file, which can be as simple as:
setinit = eg1024-1024 /

band = '6cm'

nchan = 16

bits = 2

bbfilter = 16.0

pol = dual /

stations = eflsberg, jodrell1, cambg32m,

onsala85, wb, noto, medicina, torun

setup = eg1024-1024

source='J0045+4555' dur=1:30 gap=1:00 /

source='M31' dur=3:30 gap=0 /

SCHED writes several different types of output files,
some of which are useful for the scheduler and some of
which are meant for the systems at the stations and
the correlator.
SCHED is written in Fortran 77 and developed mainly
by Craig Walker at the National Radio Astronomy
Observatory (NRAO). Continuous developments at the
stations require updates to SCHED. With the
deployment of the Digital Base Band Converter
(DBBC) system in the European VLBI Network (EVN),
we at JIVE decided to work on the SCHED code.

URL: www.aoc.nrao.edu/~cwalker/sched

F2PY
Instead of continuing working on the Fortran code at
JIVE, we decided to do new developments in Python.
However, we do not want to start from scratch and
rewrite everything in Python in one go, as SCHED is
quite a large program (82K lines of code). This is
where F2PY comes in. The purpose of the F2PY
-Fortran to Python interface generator- is to provide a
connection between the Python and Fortran languages.
F2PY is a part of NumPy (numpy.f2py), it facilitates
creating/building Python C/API extension modules
that make it possible:

to call Fortran 77 subroutines

to access Fortran 77 COMMON blocks

from Python.
When we rewrite a Fortran subroutine to Python, any
calls to other Fortran subroutines can be handled by
the extension module. This allows us to rewrite parts
of the SCHED program in Python, while still re-using
other parts.

URL: docs.scipy.org/doc/numpy/f2py

Author

Bob Eldering
eldering@jive.eu

pySCHED
We call the Python fork of SCHED pySCHED. The
main reason for the switch to Python, is that it is a
modern language. This will make it easier to maintain
pySCHED in the future. And since the astronomy
programming community seems to be more familiar
with Python than with Fortran, the switch to Python
will allow more people to change and contribute to the
code.
Also, using Python made it easy to add a number of
features to SCHED:

With setuptools and the Python Package Index
(PyPI) it is easy to install pySCHED, simply type:
pip3 install pythonSCHED in a shell.

SCHED has a large amount of data files describing
for examples sources and stations. The distribution
of these data files is closely tied to the distribution
of the program itself. In pySCHED, these files are
updated on start-up, using the Python module
git and a repository on GitHub.

Using Matplotlib we get plots that automatically
allow zooming, panning, printing, etc.

GitHub URL: github.com/jive-vlbi/sched

PyPI URL: pypi.org/project/pythonSCHED

Applying F2PY to SCHED
Fortran Python

SUBROUTINE GEOCHK(JSCN, ISCN, STARTB, TGEOEND, OKGEO, USEGEO,

1 SEGELEV)

DOUBLE PRECISION STARTB, TGEOEND

DOUBLE PRECISION SRCSEP, REQSEP, TFREQ

INTEGER JSCN, ISCN, USEGEO(*)

LOGICAL OKGEO(*)

REAL SEGELEV(MAXSTA,MGEO)

Subroutine arguments in Fortran 77 are passed by ref-
erence. This does not match Python method calling.
This is solved by marking arguments as input and/or
output. The easiest way to do this is by adding special
comments in the code. An example is shown here, the
original on the left and the added comments on the
right.

SUBROUTINE GEOCHK(JSCN, ISCN, STARTB, TGEOEND, OKGEO, USEGEO,

1 SEGELEV)

Cf2py intent(in) JSCN, ISCN, STARTB, TGEOEND

Cf2py intent(in, out) OKGEO, USEGEO

Cf2py intent(out) SEGELEV

DOUBLE PRECISION STARTB, TGEOEND

DOUBLE PRECISION SRCSEP, REQSEP, TFREQ

INTEGER JSCN, ISCN, USEGEO(*)

LOGICAL OKGEO(*)

REAL SEGELEV(MAXSTA,MGEO)

CALL GEOCHK(JSCN, ISCN, STARTB, TGEOEND, OKGEO, USEGEO,

1 SEGELEV)

C

DO ITRIAL = 1, GEOTRIES

IF(GEOPRT .GE. 1) THEN

CALL WLOG(0, ' ')

MSGTXT = ' '

WRITE(MSGTXT, '(A, I5, A, I5)')

1 'GEOMAKE starting to construct trial segment',

2 ITRIAL, '. First scan: ', ISCN

CALL WLOG(0, MSGTXT)

END IF

Running the example above through F2PY, we get a
Python module (called schedlib in this example),
which allows us to call Fortran code from Python. On
the left is the original Fortran code calling GEOCHK

with some context and on the right is the Python trans-
lation of the same code.

ok_geo = np.empty(shape=schedlib.schsou.geosrci.shape,

dtype=bool)

use_geo = np.empty(shape=schedlib.schsou.geosrci.shape,

dtype=int)

ok_geo, use_geo, seg_elevation = schedlib.geochk(

j_scan, scan_index, start_time, end_time, ok_geo, use_geo)

for trial in range(1, schedlib.schsou.geotries + 1):

if schedlib.schsou.geoprt >= 1:

schedlib.wlog(0, "GEOMAKE starting to construct "

"trial segment {}. First scan: {}".\

format(trial, scan_index))

INTEGER NLGP, NRESTFQ(MAXLGP)

DOUBLE PRECISION RESTFREQ(MAXLCH,MAXLGP)

CHARACTER LINENAME(MAXLGP)*8

C

COMMON /SCHLIN/ RESTFREQ, NLGP, NRESTFQ

COMMON /SCHCLI/ LINENAME

DO IGP = 1, NLGP

PRINT *, LINENAME(I), RESTFREQ(I)

END DO

COMMON blocks are also made available in
schedlib . SCHED does not use data structures,
instead lists of data structures are represented using
arrays: members are grouped together by using the
same index. In pySCHED we formalize this conven-
tion by actually grouping these COMMON block ar-
rays into classes. The base Python class Catalog

has all the logic to get access to the COMMON block
variables. Classes derived from Catalog only have
to define which members are to be grouped together.
Here an example is shown of such a derived class with
a basic usage snippet.

class LineRestFrequencyCatalog(Catalog):

block_items = {

schedlib.schlin : [

"restfreq",

"nrestfq"

],

schedlib.schcli : [

"linename"

]}

def scheduled_slice(self):

return slice(s.schlin.nlgp)

catalog = LineRestFrequencyCatalog()

for entry in catalog.entries:

print(entry.linename, entry.restfreq)

Of course a poster is not complete without at least
some pictures. On the left and right a beam plot is
shown using PGPLOT in SCHED and using Matplotlib
in pySCHED respectively.

www.aoc.nrao.edu/~cwalker/sched
docs.scipy.org/doc/numpy/f2py
eldering@jive.eu
github.com/jive-vlbi/sched
pypi.org/project/pythonSCHED

