# A Rough Agenda For the Next Hour

- IAU Astronomical Data Representation Working Group
- Improving FITS
- Structured Data Formats
- VO data formats as IAU Standards

# IAU DATA Representation Working Group

Lucio Chiappetti: I think we should try to resurrect both the [IAU] Data Representation [Working Group] and the FITS SEG (the former was never formalized, and the second never convened in its post-IAUFWG composition) before the next IAU GA

IAU Data Representation Working Group

Should such a group include

- Structured Data Formats (ASDF, HDF)
- VO Data Formats
- FITS

**FITS Extensions** 

Reconvene the FITS SEG to change the standard to **allow** arbitrary-length keywords:

IAU Astronomical Data Formats Working Group

Should we add VO data formats as IAU Standards

# Fits internal compression 3 years after the publication...

My problem or our problem?

Pierre Fernique

Centre de Données astronomique de Strasbourg

ADASS – Oct 2019 - Groningen

# The background

- CDS users complain us that Aladin is no longer able to load their FITS images => in fact internal compressed FITS images.
   ex: Skymapper (RICE ONE), SUBARU (GZIP 2), ...
- I tried to implement new FITS uncompress algorithms during this summer..
- I failed (RICE\_1 has been integrated successfully).

  => Too complex, too much variations: RICE\_1, RICE\_ONE, GZIP1, GZIP2, HCOMPRESS and the dedicated IRAF/PLIO compressions + potentially others is not enough documented in the FITS IAU document (reference to external document, etc)

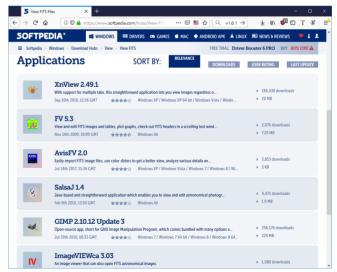
  => need to look in the CFITSIO code to understand some details...
- Too much for me in the time and the energy that I had.
   May be we were not enough motivated: the real interest of the FITS internal compression was not obvious for us.
  - => May be the problem was on my side.

#### **FITS**

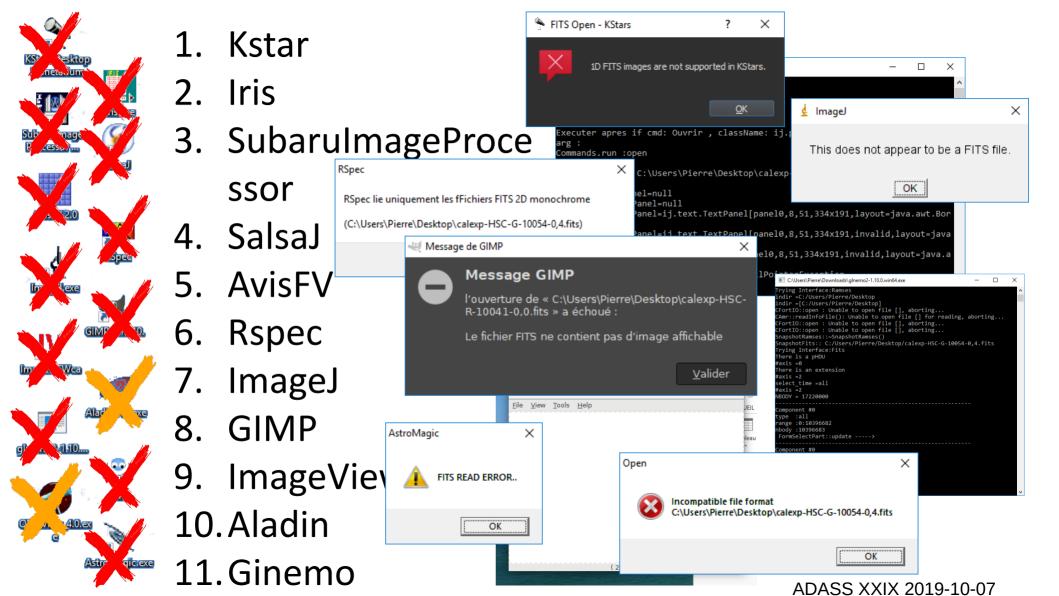
Definition of the Flexible Image Transport System (FITS)

Version 4.0: updated 2016 July 22 by the IAUFW

FITE V ag Group
Commission 5: Doc. on and As. Data
reations. omical Umos.
v.gov/iaufwg/


ADASS XXIX 2019-10-07

I was curious...


I took a few hours to install and test all recent FITS
viewers that I found, which are not CFITSIO based.
(for the FITS tools based and CFITSIO, the compression/uncompression
integration is not a problem as it has been already coded by the promoters of
this evolution)







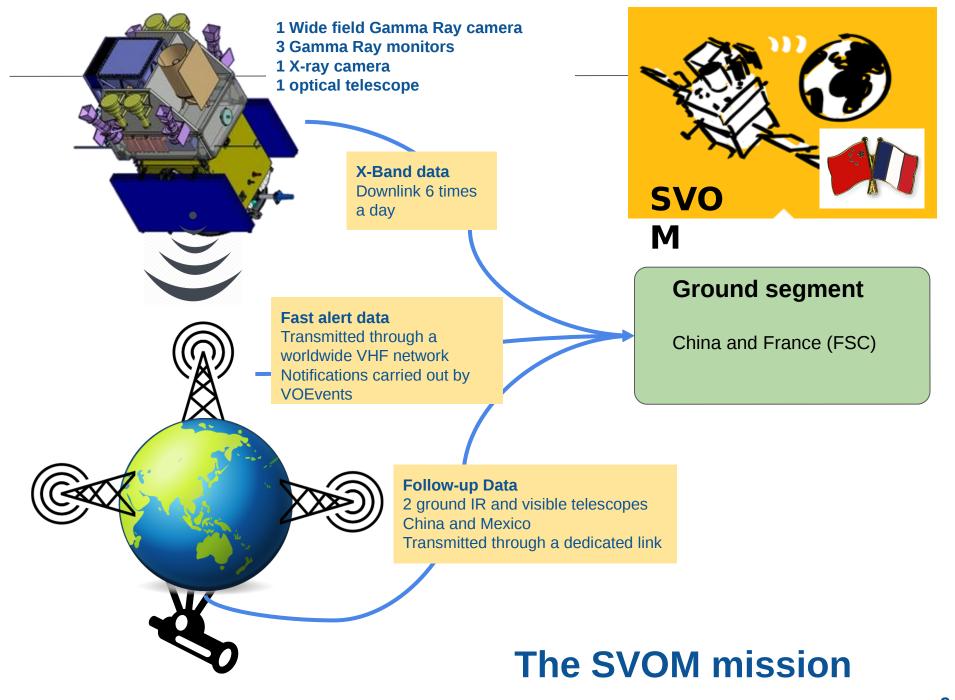
1. Kstar 2. Iris 3. SubarulmageProce ssor 4. Salsal 5. AvisFV 6. Rspec lmageVIEWca 7. ImageJ AladinV10.exe 8. GIMP glnemo2-1.10.... 9. ImageViewca 10. Aladin QFitsView\_4.0.ex <u>AstroMagiciexe</u> 11. Ginemo ADASS XXIX 2019-10-07



# Is it our problem?

• No one is supporting internal compression
=> I'm not alone to be a little bit reluctant to integrate internal FITS compression methods.

 My fears here – and my observation - is that the fact to authorize a collection of compression methods in the FITS standard will probably kill - or restrict the usage of - all tools not CFITSIO based.


- And it is certainly not a good thing for the interoperability but for sure an efficient way to kill the biggest interest of using FITS,
- And probably not a good choice for the future of the unfortunate internal compressed FITS image collections.

Is it too late?



# Annotating FITS Files with VO tags SVOM case

Laurent Michel - Mireille Louys Strasbourg Observatory



Laurent Michel

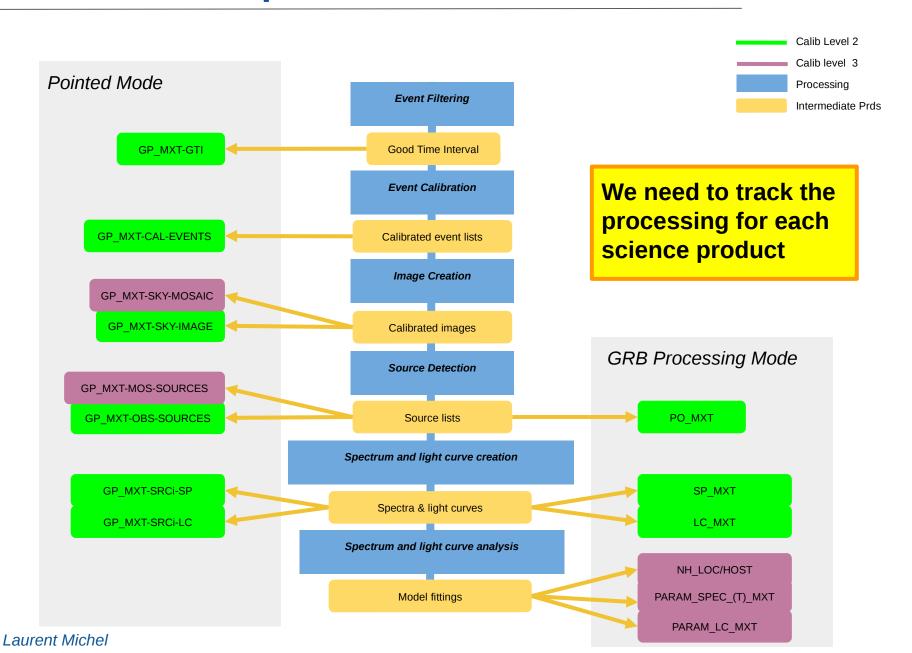
# **VO in FITS at a Glance**

### All SVOM science products are in FITS format

Mission requirement

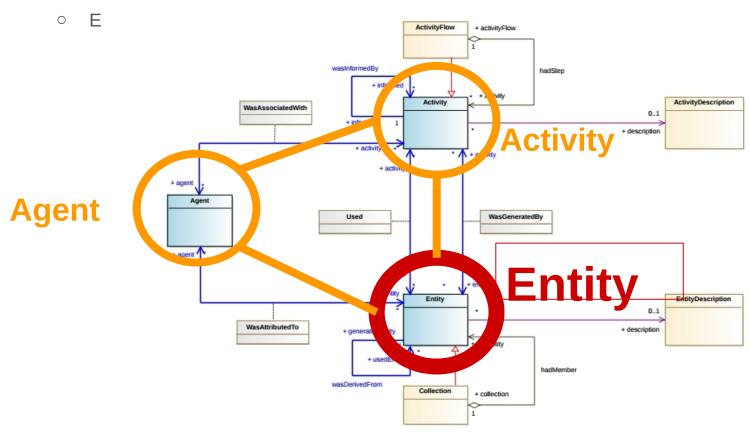
### Why VO tags in FITS files?

- OBSCORE: Facilitate the publishing in VO collections
- PROVENANCE: Facilitate the reprocessing with a different setup


#### Guideline

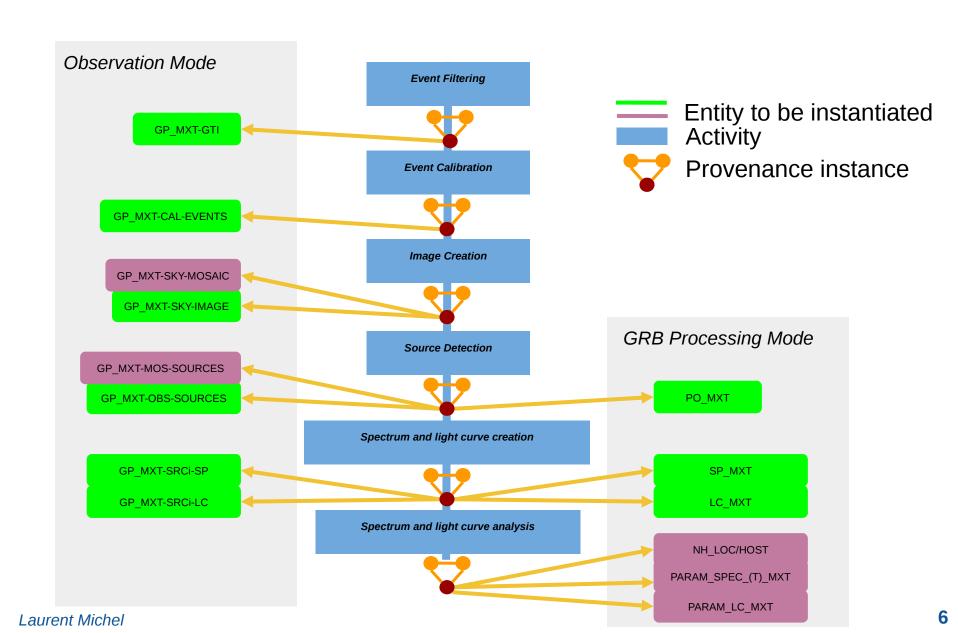
- Clear separation between native data (OGIP kws, Mission data, science data) and VO stuff
  - One FITS extension for the VO: VO-TAGS
- Obscore as a set ok keywords
- Provenance: JSON serialization in a 1x1 ASCII table

#### Tools

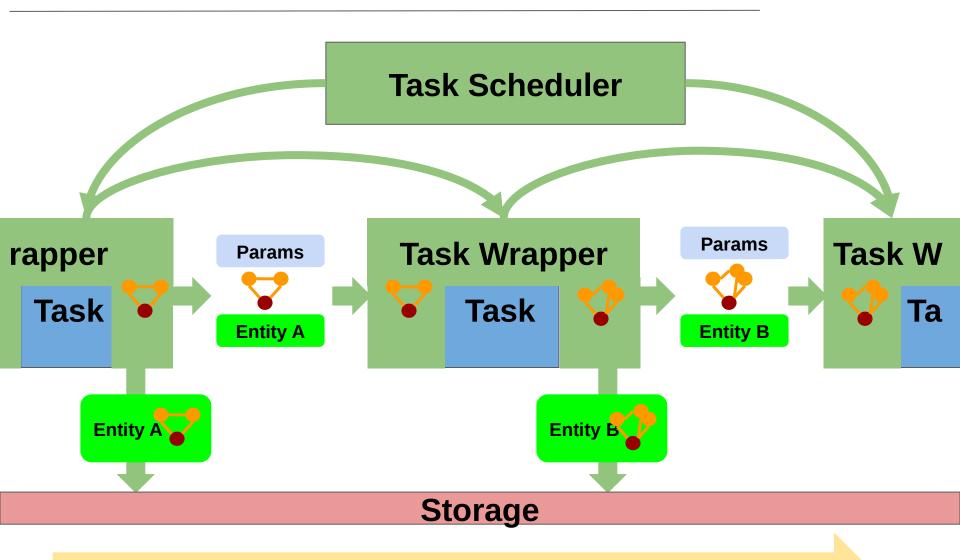

- A python module to write and read data annotations
  - N ot public yet

# **Provenance: Pipeline Workflow**




#### **Provenance DM at a Glance**

- **Designed around 3 poles** (WARNING: the model has evolved since 2017)
  - Activity, Agent and Entity
- Prov Speaking: We want to describe the activities leading to our entities




5

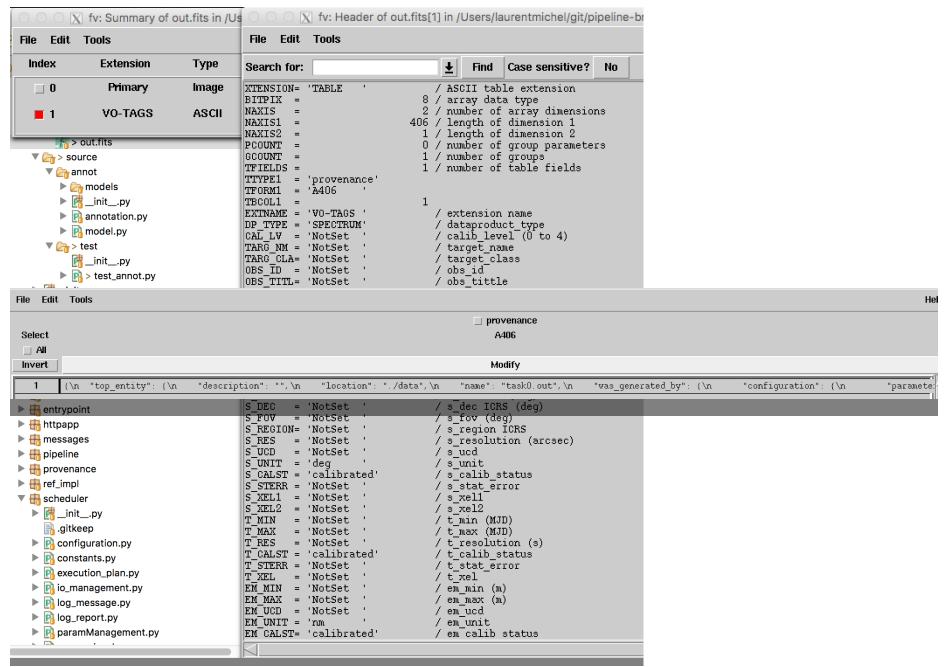
# **Provenance View**



# **Incremental Provenance Construction**



**Processing Time line** 


Laurent Michel

# **Python Code Snippet**

```
annotation = Annotation('../../data/out.fits')
annotation.create_vo_extension()
annotation.set_obscore_keyword("DP_TYPE", "SPECTRUM");
prov_0 = {
                                                      columns": ["vo_name", "fits_name", "description", "default_values","allowed_values"],
   "top_entity": {
                                                     "fields": Γ
      "description": "".
                                                               ["dataproduct_type", "DP_TYPE", "dataproduct_type", "", ["SPECTRUM", "IMAGE"]],
                                                               ["calib_level", "CAL_LV", "calib_level (0 to 4)", "", [0, 1, 2, 3, 4]],
      "name": "task0.out".
                                                               ["target_name", "TARG_NM", "target_name", "", []],
                                                               ["target_class", "TARG_CLA", "target_class", "", []],
      "location": "./data",
                                                               ["obs_id", "OBS_ID", "obs_id", "", []],
      "was_generated_by": {
                                                               ["obs_title", "OBS_TITL", "obs_tittle", "", []],
                                                               ["obs_collection", "COLL_NM", "obs_collection", "", []],
         "used_entities": [
                                                               ["obs_creation_date", "CREA_DAT", "obs_creation_date (ISO 8601)", "", []],
                                                               ["obs_release_date", "RLEA_DAT", "obs_release_date (ISO 8601)", "", []],
                                                               ["obs_publisher_did", "PUB_DID", "obs_publisher_did", "", []],
              "name": "DummyJob.py",
                                                               ["publisher_id", "PUB_ID", "obs_publisher_id", "", []],
                                                               ["bib_reference", "BIB_REF", "bib_reference", "", []],
              "location": "./data".
                                                               ["data_rights", "PUB_ID", "data_rights", "", ["Public", "Secure", "Proprietary"]],
              "was_generated_by": {}
                                                               ["access_url", "URL", "access_url", "", []],
                                                               ["access_format", "FORMAT", "access_format", "application/fits", []],
                                                               ["access_estsize", "EST_SIZE", "access_estsize", "", []],
                                                               ["s_ra", "S_RA", "s_ra ICRS (deg)", "", []],
                                                               ["s_dec", "S_DEC", "s_dec ICRS (deg)", "", []],
         "name": "task0".
                                                               ["s_fov", "S_FOV", "s_fov (deg)
                                                               ["s_region", "S_REGION", "s_reg OBSCORE model:
         "configuration": {
                                                               ["s_resolution", "S_RES", "s_re
            "parameters": [
                                                               ["s_ucd", "S_UCD", "s_ucd", "",
                                                                                           Mireille Louys (CDS) proposed a
                                                               ["s_unit", "S_UNIT", "s_unit",
               "task0",
                                                                                           FITS-compliant version of the
                                                               ["s_calib_status", "S_CALST", "
                                                               ["s_stat_error", "S_STERR", "s_
               "a"
                                                                                           Obscore columns
                                                               ["s_xel1", "S_XEL1", "s_xel1",
                                                               ["s_xel2", "S_XEL2", "s_xel2",
                                                               ["t_min", "T_MIN", "t_min (MJD)
                                                               ["t_max", "T_MAX", "t_max (MJD)", "", []],
                                                               ["t_resolution", "T_RES", "t_resolution (s)", "", []],
                                                               ["t_calib_status", "T_CALST", "t_calib_status", "calibrated", ["uncalibrated", "raw", "calibrat
                                                               ["t_stat_error", "T_STERR", "t_stat_error", "", []],
annotation.store_provenance_string(json.dumps(prov_0, indent=2, sort_keys=True))
print(annotation.get_provenance_string())
```

annotation.commit()

### **VO Stuff with FV**



# How to invite authors to better use FITS standards? (spectra / images)

#### Why?

- Improve reusability (FITS recommendations) https://fits.gsfc.nasa.gov/fits\_dictionary.html
- Improve discovery: Virtual Observatory
   DataModel ObsCore (meta-data for observation)
   example: CADC, VizieR, NED, ...

#### **Status**

- The FITS format is generally conform (fits-verify checked)
- Authors are quite inventive / take some freedom with FITS recommendations
  - Usage of exotic keywords (e.g.: POSRA, POSDEC)
  - Uncomplete WCS .. (e.g.:CUNITx not specified)
- A large variety of serialization for spectra (WCS, multipsec..)

#### To put FITS spectra/images in the Virtual Observatory

- ObsCore mapping possible with FITS recommendations
- are FITS recommendations well used ?





| obscore         | FITS standards (ex) |
|-----------------|---------------------|
| target_name     | OBJECT              |
| s_ra            | RA, WCS             |
| Coord. syst.    | RADESYS             |
| s_dec           | DEC, WCS            |
| s_fov           | WCS                 |
| s_region        | WCS                 |
| s_resolution    | WCS                 |
| t_min           | TIME-OBS            |
| t_max           | TIME-END            |
| t_exptime       | EXPTIME             |
| t_resolution    | ???                 |
| em_min          | WCS                 |
| em_max          | WCS                 |
| em_res_power    | WCS                 |
| o_ucd           | VO : fixed constant |
| pol_states      | WCS-STOKES          |
| facility_name   | TELESCOP            |
| instrument_name | INSTRUM             |

# How to invite authors to better use FITS standards? (spectra / images) What about FITS spectra/images?

Authors are not lazzy but they don't know how

- How FITS header are reused?
- How to create FITS header reusable for the VO?

#### Scope for improvment

- Communication with authors:
   VO schools, conferences, ...
- Guide authors to improve their data:
  - Data center documentation, good practices (NED), ...
  - Provide tools to improve FITS header: FITS header validators?

**ex:** https://cdsarc.unistra.fr/vizier.submit/fitsvalidator.html

New meta-data serialisation ?
 (e.g. SVOM serialization, Michel L.)



If the FITS file is not in the standard WCS system, the reusability of the file is compromised.

Try this tool to check the completeness of your FITS header:

(CDS)

http://cdsarc.u-strasbg.fr/vizier.submit/fitsvalidator.html

Part of the brochure for authors (FWASS - 2019)