

cherenkov telescope array

A DIRAC-based prototype for the Cherenkov Telescope Array data management, processing and simulations

<u>Luisa Arrabito¹</u> J. Bregeon² for the CTA Consortium

¹LUPM CNRS-IN2P3 France ²LPSC CNRS-IN2P3 France

October 6th-10th 2019, Groningen 29th Astronomical Data Analysis Software and Systems (ADASS)

CTA (Cherenkov Telescope Array)

- Next generation IACT, VHE gamma ray Observatory
- Worldwide collaboration, 1500 members
- Scientific goals
 - Cosmic ray origins, High Energy astrophysical phenomena, fundamental physics and cosmology

- Two Cherenkov telescope arrays
 - Northern Site (La Palma, Spain): 4 largesized, 15 medium-sized telescopes
 - Southern site (Paranal, Chile): 4 large- sized,
 25 medium-sized, 70 small-sized telescopes
- Project schedule
 - Construction and deployment: 2017-2025
 - Science operations: from 2022, for ~30 years

CTA Observatory and Consortium

- CTA Observatory (CTAO) is the legal entity responsible for the construction, operation, maintenance and upgrade of the observatory
- CTA Consortium (CTAC) member institutes make inkind contributions to CTA construction
- CTA Software/Computing
 - CTAO Computing Department
 - Architecture, Design, Specification
 - Coordination of implementation via IKC, contracts with companies, in-house implementation

CTA Consortium

– CTAC

From prototype development to IKC

CTA Computing Challenges

- CTA has data management challenges with large-scale data processing and simulation needs
 - + 27 PB/year
 - 1200 9000 cores/year on average after 15 years of operations

Data Flow

- On-site computing
 - Near real-time processing
 - Next-day data processing for quicklook and science alerts
 - On-site buffer and data transfer
- Off-site computing
 - Simulations and final processing
 - Bulk Archive ~ PB/year
 - Science data preparation
 - Science Archive ~ GB/year
 - Open access through Science Portal

- CTA aims for efficient fully automatic processing
 - Raw data to be processed within 1 month
 - 1 full re-processing per year
 - Regular simulations to calculate the Instrument Response Functions
- Distributed computing model for Off-site computing
 - Baseline with 4 first-class Data Centers
- DIRAC is a software framework to manage data and workload on a distributed infrastructure
 - Developed at CERN by LHCb collaboration to use WLCG resources
 - Then generalized to be used by several other experiments/projects (high energy physics, astronomy, life science, etc.)
 - Proposed for CTA Final Processing and Simulations

- An open source software framework for distributed computing
 - <u>https://github.com/DIRACGrid/DIRAC</u>
- A layer between users and resources of different kinds
- Experiment agnostic, extensible, flexible
- Current users communities
 - LHCb, ILC, Belle II, T2K, CTA, Pierre Auger Observatory, Eiscat 3D, BioMed, We-nmr etc.
- Other experiments/observatories are interested (SKA, Virgo, ...)
- EGI Core Service (DIRAC4EGI): https://dirac.egi.eu/DIRAC
- Proposed as common tool within the ESCAPE H2020 project

DIRAC Software Architecture

- Based on Service Oriented Architecture and composed of several Systems interacting together through Client/Service communications
- Each System composed of:
 - Services, Agents, DBs, Client interface (CLI, API, REST, web)
- Main DIRAC Systems:
 - Workload Management System (WMS)
 - Data Management System (DMS)
 - Transformation System (TS)
 - Request Management (RMS)
 - Resource Status System (RSS)
 - Accounting

DIRAC Workload Management System

- Much more than an interface for 'job submission'
- Implements the pilot mechanism
 - Pull scheduling paradigm and standard configurable environment for jobs
- Allows combination of heterogeneous resources in a transparent way
 - Grids, clouds, standalone clusters, etc.
- Management of users' priorities
- Allows very detailed job monitoring
- Users submit jobs directly to the WMS or through the Transformation System (used for large productions, next slide)

DIRAC Transformation System for Data-Driven Workflows

- Data-driven workflows as chains of data transformations
- Transformation: input data filter + recipe to create tasks
 - Tasks are created as soon as data with required properties are registered into the file catalog
- Tasks:
 - Jobs submitted to the WMS
 - Data operation requests submitted to the RMS (for bulk data operations)

DIRAC Production System for data driven workflows

- Transformations can be combined together to form workflows
 of arbitrary complexity
- This is achieved by the DIRAC Production System (CTA contribution to DIRAC core)
 - Developed on the top of the Transformation System
 - Allows full automatization of multi-step workflow execution

DIRAC Data Management (DMS)

- Storage element abstraction with a client implementation for each access protocol
 - DIPS DIRAC data transfer protocol
 - FTP, HTTP, WebDAV
 - HEP centers specific protocols (SRM, XROOTD, RFIO, DCAP, etc.)
 - Cloud specific data access protocols (S3, Swift, CDMI)
- DIRAC is dealing with large volumes of scientific data
 - 10's of Petabytes
 - 10⁷-10⁸ of files and directories
- Massive data operations supported
 - Asynchronous execution
 - Automatic failure recovery
 - Data integrity checking
 - Automated data driven workflows

DIRAC File Catalog (DFC)

- DFC as Replica Catalog
 - A service to keep track of all the physical file replicas in all storage elements
 - Defines a single logical name space for all the managed data
 - Organizes files hierarchically like in common file systems
- DFC as Metadata Catalog
 - Support for user-defined metadata as key-value pairs (*e.g.* simulation conditions, provenance data, etc.). Example from CTA:
 - primary = {gamma, proton, electron, ...}
 - zenith = {20, 40, 60, ...}
 - air_shower_sim_prog = corsika
 - ...
 - Allow for efficient searches. Example from CTA:

find air_shower_sim_prog = corsika air_shower_sim_prog_version = 7.0 primary=gamma zenith=40 site=Paranal

- Support of Datasets
 - Alias to a given query
 - Useful for frequent queries, e.g.: cta-dump-dataset Prod4_Paranal_gamma_20deg_North_dl0
- Scalability
 - e.g. 30 million of replicas in CTA DFC works fine
 - Confirmed by dedicated performance measurements

CTA-DIRAC prototype

- CTA-DIRAC servers
 - 5 servers at CC-IN2P3, PIC, DESY-ZN
 - Running all DIRAC Systems just described and more
 - MySQL servers hosting all DIRAC DBs
 - 1 web-server for DIRAC portal
- CTA-DIRAC software extension
 - Mainly extension of the DIRAC Job API to easily configure CTA jobs
 - Utility to setup CTA software environment for all jobs (supporting multiple software locations)
 - Utility to register files with custom meta-data and directory structure in the DFC

- CernVM-FS (CVMFS) to easily manage sw installation and access by distributed jobs
 - 1 stratum-0 at CC-IN2P3 and 2 stratum-1 at CC and DESY-ZN

Current computing model for MC simulations (CTA preparatory phase)

- Massive MC simulations during the CTA preparatory phase
 - CTA site selection, telescope layout, Instrument Response Functions
- Use CTA-DIRAC prototype to access EGI grid resources
 - About 15 sites for computing
 - 6 Storage Elements: ~ 6 PB in total
- Computing model used in this phase
 - MC production jobs run at all sites
 - Output data stored at 6 SEs
 - MC analysis jobs run at selected sites with good connectivity to SEs
 - Users jobs also running in parallel
- Future computing model will be distributed but not necessarily gridbased
 - Will have to ensure fast data-processing and no data loss

Grid sites supporting CTA Virtual Organization

CTA-DIRAC exploitation for MC simulations (CTA preparatory phase)

- CTA-DIRAC exploitation (since 2013)
 - > 15 million executed jobs
 - 30 million of replicas in the DFC
 - All productions launched via the Transformation System
 - New resources integrated
 - Scalability tests with Clouds done in 2018

Transferred data by destination since 2018

distributed over 6 sites

100-200 million HS06 CPU

5-10 PB transferred data/year

4.6 PB currently on disk/tape

Resource usage

hours/year

Conclusions

- We have developed a DIRAC-based prototype to handle the massive MC simulations of CTA during its preparatory phase
 - Millions of jobs and CPU hours every year over 15 sites
 - Handling 10's of Petabytes, millions of files and directories
 - Automated workflows management
 - CTA contribution to DIRAC core (Production System)
- CTA-DIRAC proposed for the future data-processing and simulations of CTA
- Future work to adapt CTA-DIRAC for the operation phase (resource description, implementation of policies, interfaces etc.)
- Successful experience with DIRAC
 - It can certainly be useful for other communities