A DIRAC-based prototype for the Cherenkov Telescope Array data management, processing and simulations

Luisa Arrabito1
J. Bregeon2
for the CTA Consortium

1LUPM CNRS-IN2P3 France
2LPSC CNRS-IN2P3 France

October 6th-10th 2019, Groningen
29th Astronomical Data Analysis Software and Systems (ADASS)
CTA (Cherenkov Telescope Array)

- Next generation IACT, VHE gamma-ray Observatory
- Worldwide collaboration, 1500 members
- Scientific goals
 - Cosmic ray origins, High Energy astrophysical phenomena, fundamental physics and cosmology
- Two Cherenkov telescope arrays
 - Northern Site (La Palma, Spain): 4 large-sized, 15 medium-sized telescopes
 - Southern site (Paranal, Chile): 4 large-sized, 25 medium-sized, 70 small-sized telescopes
- Project schedule
 - Construction and deployment: 2017-2025
 - Science operations: from 2022, for ~30 years
CTA Observatory and Consortium

CTA Observatory

- CTA Observatory (CTAO) is the legal entity responsible for the construction, operation, maintenance and upgrade of the observatory.

- CTA Consortium (CTAC) member institutes make in-kind contributions to CTA construction.

CTA Software/Computing
- CTAO Computing Department
 - Architecture, Design, Specification
 - Coordination of implementation via IKC, contracts with companies, in-house implementation

CTAC
- From prototype development to IKC
CTA Computing Challenges

- CTA has data management challenges with large-scale data processing and simulation needs
 - + 27 PB/year
 - 1200 – 9000 cores/year on average after 15 years of operations

Data Flow

- **On-site computing**
 - Near real-time processing
 - Next-day data processing for quick-look and science alerts
 - On-site buffer and data transfer

- **Off-site computing**
 - Simulations and final processing
 - Bulk Archive ~ PB/year
 - Science data preparation
 - Science Archive ~ GB/year
 - Open access through Science Portal
CTA and DIRAC

• CTA aims for efficient fully automatic processing
 – Raw data to be processed within 1 month
 – 1 full re-processing per year
 – Regular simulations to calculate the Instrument Response Functions

• Distributed computing model for Off-site computing
 – Baseline with 4 first-class Data Centers

• DIRAC is a software framework to manage data and workload on a distributed infrastructure
 – Developed at CERN by LHCb collaboration to use WLCG resources
 – Then generalized to be used by several other experiments/projects (high energy physics, astronomy, life science, etc.)
 – Proposed for CTA Final Processing and Simulations
DIRAC Introduction

- An open source software framework for distributed computing
 - https://github.com/DIRACGrid/DIRAC
- A layer between users and resources of different kinds
- Experiment agnostic, extensible, flexible
- Current users communities
 - LHCb, ILC, Belle II, T2K, CTA, Pierre Auger Observatory, Eiscat 3D, BioMed, We-nmr etc.
- Other experiments/observatories are interested (SKA, Virgo, ...)
- EGI Core Service (DIRAC4EGI): https://dirac.egi.eu/DIRAC
- Proposed as common tool within the ESCAPE H2020 project
DIRAC Software Architecture

• Based on Service Oriented Architecture and composed of several Systems interacting together through Client/Service communications
• Each System composed of:
 – Services, Agents, DBs, Client interface (CLI, API, REST, web)
• Main DIRAC Systems:
 – Workload Management System (WMS)
 – Data Management System (DMS)
 – Transformation System (TS)
 – Request Management (RMS)
 – Resource Status System (RSS)
 – Accounting
 – ...

DIRAC Workload Management System

- Much more than an interface for ‘job submission’
- **Implements the pilot mechanism**
 - Pull scheduling paradigm and standard configurable environment for jobs
- Allows combination of heterogeneous resources in a transparent way
 - Grids, clouds, standalone clusters, etc.
- Management of users’ priorities
- Allows very detailed job monitoring
- Users submit jobs directly to the WMS or through the Transformation System (used for large productions, next slide)
DIRAC Transformation System for Data-Driven Workflows

- Data-driven workflows as chains of data transformations
- Transformation: input data filter + recipe to create tasks
 - Tasks are created as soon as data with required properties are registered into the file catalog
- Tasks:
 - Jobs submitted to the WMS
 - Data operation requests submitted to the RMS (for bulk data operations)
DIRAC Production System for data driven workflows

- Transformations can be combined together to form workflows of arbitrary complexity
- This is achieved by the DIRAC Production System (CTA contribution to DIRAC core)
 - Developed on the top of the Transformation System
 - Allows full automatization of multi-step workflow execution

- CTA workflow example
 - Split/merge, machine learning model production, etc.
DIRAC Data Management (DMS)

- Storage element abstraction with a client implementation for each access protocol
 - DIPS – DIRAC data transfer protocol
 - FTP, HTTP, WebDAV
 - HEP centers specific protocols (SRM, XROOTD, RFIO, DCAP, etc.)
 - Cloud specific data access protocols (S3, Swift, CDMI)
- DIRAC is dealing with large volumes of scientific data
 - 10’s of Petabytes
 - 10^7-10^8 of files and directories
- Massive data operations supported
 - Asynchronous execution
 - Automatic failure recovery
 - Data integrity checking
 - Automated data driven workflows
DIRAC File Catalog (DFC)

• DFC as Replica Catalog
 – A service to keep track of all the physical file replicas in all storage elements
 – Defines a single logical name space for all the managed data
 – Organizes files hierarchically like in common file systems

• DFC as Metadata Catalog
 – Support for user-defined metadata as key-value pairs (e.g. simulation conditions, provenance data, etc.). Example from CTA:
 • primary = {gamma, proton, electron, ...}
 • zenith = {20, 40, 60, ...}
 • air_shower_sim_prog = corsika
 • ...
 – Allow for efficient searches. Example from CTA:
    ```
    find air_shower_sim_prog = corsika air_shower_sim_prog_version = 7.0
    primary=gamma zenith=40 site=Paranal
    ```
 – Support of Datasets
 • Alias to a given query
 • Useful for frequent queries, e.g.:
      ```
      cta_dump_dataset Prod4_Paranal_gamma_20deg_North_dl0
      ```

• Scalability
 – e.g. 30 million of replicas in CTA DFC works fine
 – Confirmed by dedicated performance measurements
CTA-DIRAC prototype

- **CTA-DIRAC servers**
 - 5 servers at CC-IN2P3, PIC, DESY-ZN
 - Running all DIRAC Systems just described and more
 - MySQL servers hosting all DIRAC DBs
 - 1 web-server for DIRAC portal

- **CTA-DIRAC software extension**
 - Mainly extension of the DIRAC Job API to easily configure CTA jobs
 - Utility to setup CTA software environment for all jobs (supporting multiple software locations)
 - Utility to register files with custom meta-data and directory structure in the DFC

- **CernVM-FS (CVMFS)** to easily manage sw installation and access by distributed jobs
 - 1 stratum-0 at CC-IN2P3 and 2 stratum-1 at CC and DESY-ZN
Current computing model for MC simulations (CTA preparatory phase)

• Massive MC simulations during the CTA preparatory phase
 − CTA site selection, telescope layout, Instrument Response Functions

• Use CTA-DIRAC prototype to access EGI grid resources
 − About 15 sites for computing
 − 6 Storage Elements: ~ 6 PB in total

• Computing model used in this phase
 − MC production jobs run at all sites
 • Output data stored at 6 SEs
 − MC analysis jobs run at selected sites with good connectivity to SEs
 − Users jobs also running in parallel

• Future computing model will be distributed but not necessarily grid-based
 − Will have to ensure fast data-processing and no data loss

Grid sites supporting CTA Virtual Organization
CTA-DIRAC exploitation for MC simulations (CTA preparatory phase)

- CTA-DIRAC exploitation (since 2013)
 - > 15 million executed jobs
 - 30 million of replicas in the DFC
 - All productions launched via the Transformation System
 - New resources integrated
 - Scalability tests with Clouds done in 2018

- Resource usage
 - 100-200 million HS06 CPU hours/year
 - 5-10 PB transferred data/year
 - 4.6 PB currently on disk/tape distributed over 6 sites

Running jobs since 2018

- 8k jobs

Transferred data by destination since 2018

- 14 PB
Conclusions

• We have developed a DIRAC-based prototype to handle the massive MC simulations of CTA during its preparatory phase
 – Millions of jobs and CPU hours every year over 15 sites
 – Handling 10’s of Petabytes, millions of files and directories
 – Automated workflows management
 • CTA contribution to DIRAC core (Production System)
• CTA-DIRAC proposed for the future data-processing and simulations of CTA
• Future work to adapt CTA-DIRAC for the operation phase (resource description, implementation of policies, interfaces etc.)
• Successful experience with DIRAC
 – It can certainly be useful for other communities