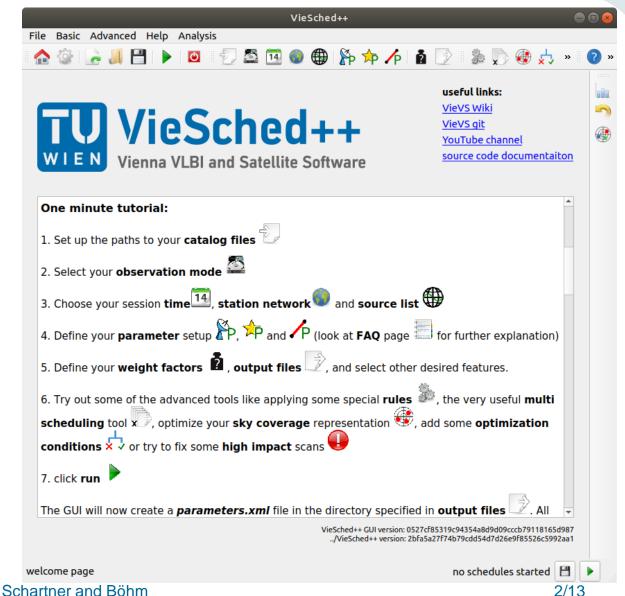


Presentation of a new VLBI scheduling software VieSched++

Matthias Schartner¹, Johannes Böhm¹

¹⁾ TU Wien, Department of Geodesy and Geoinformation, Vienna, Austria



Why?

- VLBI scheduling:
- SKED (Geodesy)
- SCHED... (Astronomy)

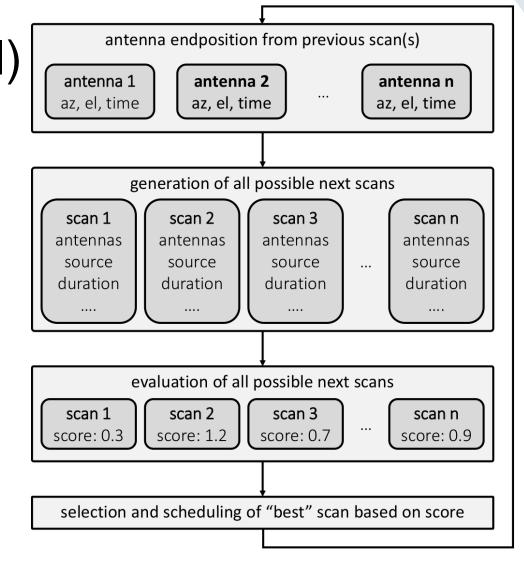
VieSched++

- written in C++
- main focus was geodetic VLBI
- GUI + YouTube tutorials https://www.youtube.com/channel/UCI2VPe7OrnznNtrh0_lwrgQ

Geodetic VLBI scheduling (I)

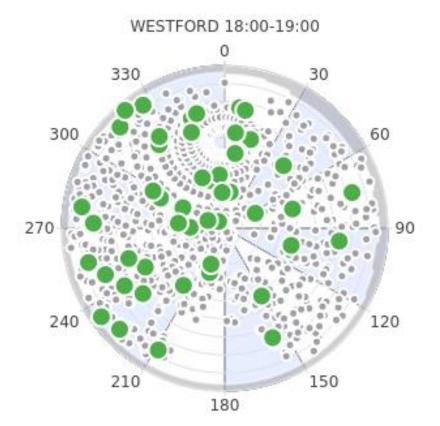
- 24-hour sessions with fixed station network
- list of suitable sources (typically 300 for geodesy)
- we typically observe 60-110 sources during the 24-hour session
- every station has different observing time T (per baseline and band)

$$T_{1,2,Band} = \left(\frac{SNR_{Band}}{\eta F_{Band}}\right)^{2} \cdot \left(\frac{SEFD_{1,Band} \cdot SEFD_{2,Band}}{rec_{Band}}\right)$$

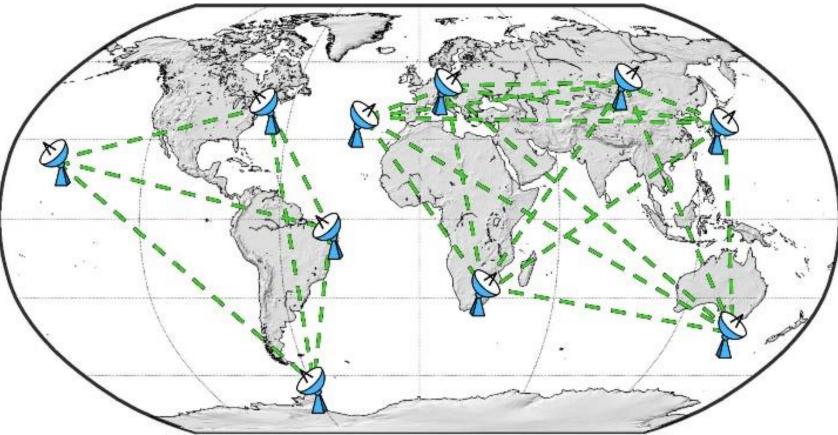

SNR = target signal to noise ratio $\eta = efficiency factor$ F = source flux density SEFD = station sensitivityrec = recording rate

Geodetic VLBI scheduling (II)

- schedule generated scan after scan
- testing all possibilities
- calculate scores per scan based on optimization criteria score_i
 - number of observations
 - sky-coverage
 - scan duration...
- selection of "best" scan based on weighted sum of these scores
 - \rightarrow "weight factors" ω_i

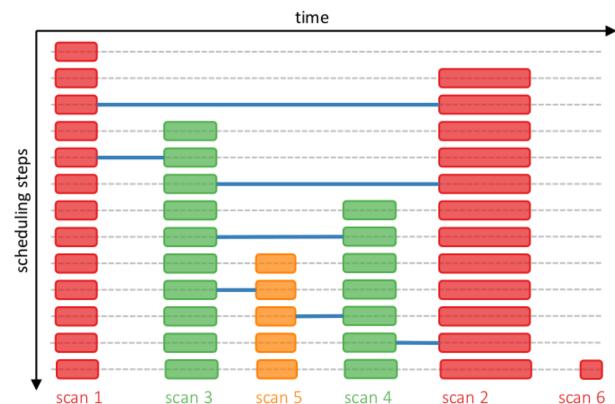

$$score = \sum_{i} \omega_i \cdot score_i$$

Challenges


- Multiple optimization criteria compete against each other
 - sky-coverage and #observations
- Best combination of optimization criteria varies based on network, sources, scientific goal...
- We have not found our "dream" optimization criterion
- We cannot determine if the schedule is good based on the schedule
 - simulations

Subnetting

- global network
 source visibility
 split network
- observe multiple sources simultaniously



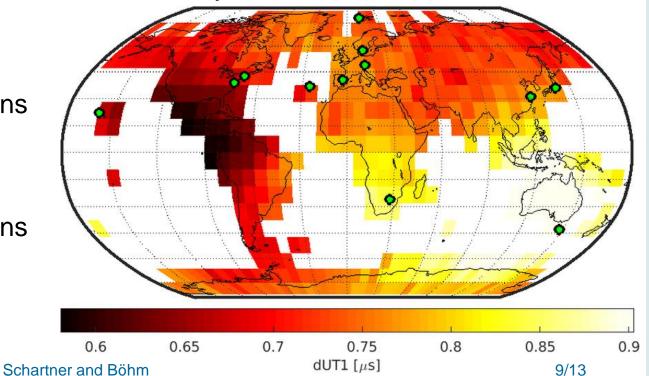
Recursive scan selection

- recursively generate schedule
- minimizes idle time
- possible to start by fixing the most important scans and build schedule around

schedule scan 1 schedule scan 2 check time 1-2 schedule scan 3 check time 1-3 check time 3-2 schedule scan 4 check time 3-4 schedule scan 5 check time 3-5 check time 5-4 check time 4-2 schedule scan 6

Sequence of observed sources is important!

- not generating only one schedule
- instead generating hundreds of schedules per session
- simulating each schedule (1000 times)
- analyze every simulation
- decide based on simulation result which schedule is best


Some numbers

24-hour experiment:

- scheduling
 - testing 100.000.000 scans
 - with 1.000.000.000 observations
- simulations and analysis
 - simulating 100.000.000 scans
 - with 1.000.000.000 observations

Monte-Carlo simulations

- testing 2.2*e*12 observations during scheduling
- simulating 5.0e12 observations for analysis

Results (I)

- T2 observing program
- blue: Scheduled with
 VieSched++
- 2-3 times more observations
- 3 times less idle time
- more observing time

	#sta	#scans	#obs	%idle	%obs
T2124	17	733	7175	28.10	44.54
T2125	17	1064	5528	22.94	53.70
T2126	17	1075	6081	24.55	49.66
T2127	19	627	6304	34.30	45.22
T2128	18	803	5983	26.24	44.90
T2129	15	526	12713	8.20	66.90
T2130	22	626	16730	10.45	69.24
T2131	19	771	15714	4.33	73.68
T2132	18	631	10219	6.04	73.37
T2133	19	732	12978	10.07	65.90

Results (II)

- EURD observing program
- goal: station coordinates
 - lower numbers are better
- VieSched++ was used for EURD09 and EURD10
- improvement is almost factor of 3

							7	
BADARY	4.8	4.2	4.6	3.7	2.0			.5
MATERA				4.3			- 6	
MEDICINA	4.7		4.1		1.8	1.9		.5
NYALES20	4.6		4.4	3.8	1.6	1.9	- 5	5
ONSALA60	6.1		4.8	5.1	1.5	1.9	- 4	un ci
SVETLOE	6.9	7.5	6.2	5.6	2.5	3.9	- 3	.5
WETTZELL	4.9	7.0	4.3		1.4	1.7		.5
YEBES40M	4.9		5.7	4.3	1.9	1.7	- 2	
ZELENCHK	6.3	3.8	5.9	4.6	2.0	1.9		.5 IA
	EURD05	EURD06	EURD07	EURD08	EURD09	EURD10		

Conclusion

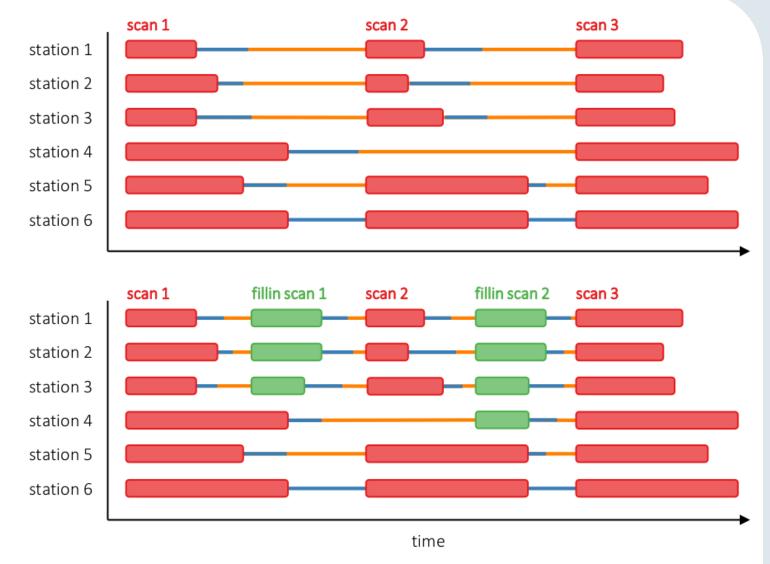
- scheduling is critical step in geodetic (and astrometry) VLBI
- determines the observations which are available during analysis
- often overlooked
- big improvements possible

available at GitHub <u>https://github.com/TUW-VieVS/VieSchedpp</u>

Outlook

- optimize scheduling for imaging (done/testing)
- combination of imaging sources and geodetic scans (testing)
- schedule observations to satellites (in development)
- extend VieSched++ for astronomy needs (planned)

more information about VieSched++


Schartner M, Böhm J (2019) VieSched++: A New VLBI Scheduling Software for Geodesy and Astrometry. Publications of the Astronomical Society of the Pacific 131(1002):084,501, DOI <u>10.1088/1538-3873/ab1820</u>

Fillin-modes

- different observing time per station
- different slew time per station
- →introduces idle time→fillin-mode scans

red: "standard" observing time green: fillin-mode observing time blue: slew time orange: idle time

