
Oneweb, Starlink and 5G

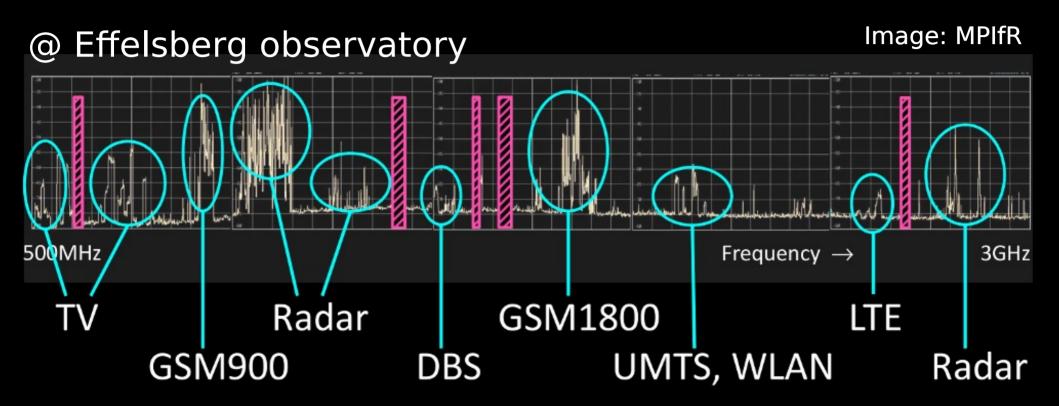
A new dark age for radio astronomy?

Benjamin Winkel @HIprocessor Max-Planck-Institut Radioastronomie

Launch of the first 60 of 12000 SpaceX/Starlink satellites

** * ** **

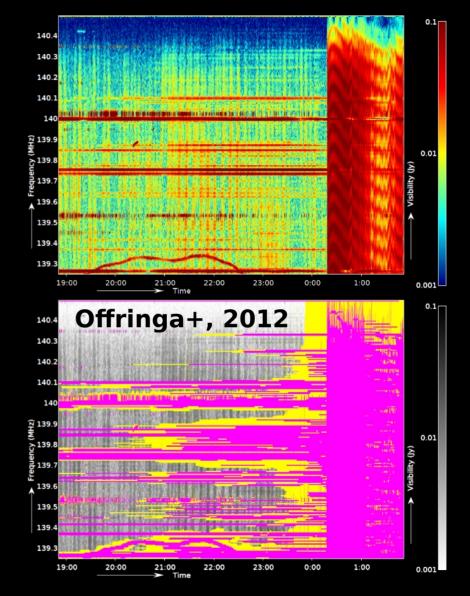
* * * * * *


Image: Marco Langbroek; May 24, 2019

CONT.

Light pollution

Image: NASA, 2016


Radio frequency interference (RFI)

RFI flagging or mitigation

Many tools available, e.g.

- Adaptive filtering
- Peak thresholding
- Higher order statistics
- Deep neural networks

Limits of RFI mitigation / detection

- Often highly adapted to:
 - One or few types of RFI
 - Particular observing modes
- High incident power can
 - Cause intermodulation products
 - Completely saturate receiver (blocking)
 → any kind of (digital) post-processing will fail

Limits of RFI mitigation / detection

- Often highly adapted to:
 - One or few types of RFI
 - Particular observing modes
- High incident power can
 - Cause intermodulation products
 - Completely saturate receiver (blocking)

Must limit transmit power or distance → Spectrum management

Spectrum management

- Lobbying :-(
- Convince administrations and companies to protect radio observatories
- Compatibility calculations If you want protection, you need to proof that you are affected!

Spectrum management

- Lobbying :-(
- Convince administrations and companies to protect radio observatories
- Compatibility calculations If you want protection, you need to proof that you are affected!

ECC Report 271

Compatibility and sharing studies related to NGSO satellite systems operating in the FSS bands 10.7-12.75 GHz (space-to-Earth) and 14-14.5 GHz (Earth-to-space)

approved 26 January 2018 Updated: 25 January 2019

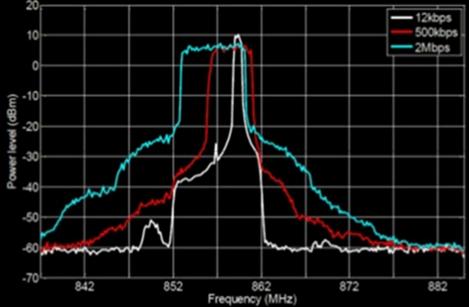
Spectrum management

- Lobbying :-(
- Convince administrations and companies to protect radio observatories
- Compatibility calculations If you want protection, you need to proof that you are affected!

ECC Report 271

Compatibility and sharing studies related to NGSO satellite systems operating in the FSS bands 10.7-12.75 GHz (space-to-Earth) and 14-14.5 GHz (Earth-to-space)

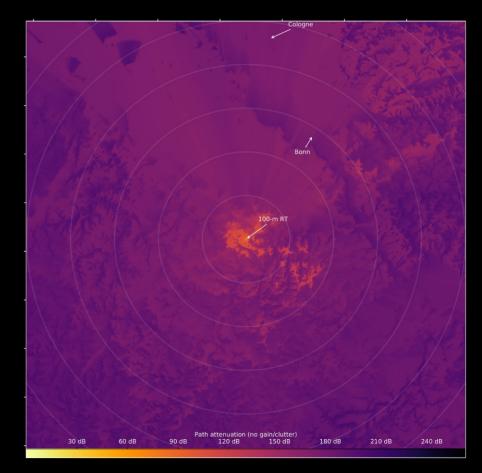
approved 26 January 2018 Updated: 25 January 2019


Oneweb & SpaceX/Starlink

Compatibility calculations

Recipe

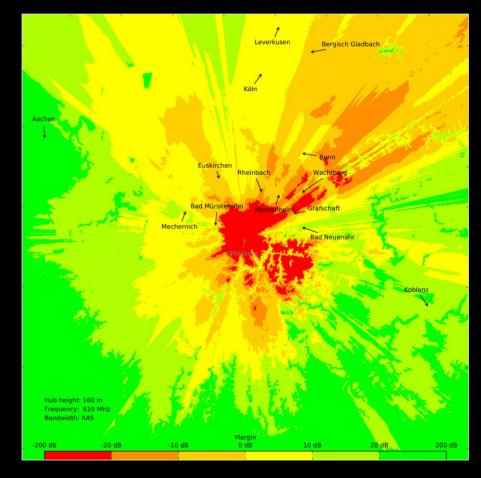
- Calculate un-/wanted emission levels of interferer
- Path propagation loss between Tx and Rx
- Infer power flux densities at victim receiver
- Compare with permitted limits



Source: Ofcom (August 2012)

Compatibility calculations

Recipe


- Calculate un-/wanted emission levels of interferer
- Path propagation loss between Tx and Rx
- Infer power flux densities at victim receiver
- Compare with permitted limits

Compatibility calculations

Recipe

- Calculate un-/wanted emission levels of interferer
- Path propagation loss between Tx and Rx
- Infer power flux densities at victim receiver
- Compare with permitted limits

pycraf

- Python package for compatibility studies
- Winkel & Jessner 2018, 2019
- Features:
 - Path propagation loss (P.452)
 - Atmospheric attenuation (P.676)
 - Query topographical data
 - Antenna patterns
 - Geographical coordinates
 - Satellite visibility

41	heightprofile.py x conversions.py x cyprop.pyx x
242	@helpers.ranged_quantity_input(
243	Erx=(1.e-30, None, apu.V / apu.meter),
244	d=(1.e-30, None, apu.m),
245	Gtx=(1.e-30, None, dimless),
246	<pre>Gtx=(1.e-30, None, dimless), strip_input_units=True, output_unit=apu.W</pre>
247	
	def Ptx from Erx(Erx, d, Gtx):
249	
253	
254	
255	Parameters
256	
	Erx - Received E-field strength [dB_uV_m, uV/m, or (uV/m)**2]
257 258	
258	
259	
260 261	
262	
263	
264	
265	
266	return 4. * np.pi * d ** 2 / Gtx * Erx ** 2 / RO_VALUE
267	
268	ale 1 second
269	@helpers.ranged_quantity_input(
270	Ptx=(1.e-30, None, apu.W),
271	d=(1.e-30, None, apu.m),
272	Gtx=(1.e-30, None, dimless),
273	<pre>strip_input_units=True, output_unit=apu.uV / apu.meter</pre>
274	def man from the second second
275	<pre>def Erx_from_Ptx(Ptx, d, Gtx):</pre>
276	
277	
278	
279	
280	
281	
282	
283	
284	
285	
286	
	return (Ptx * Gtx / 4. / np.pi * RO_VALUE) ** 0.5 / d * 1.e6
	@helpers.ranged_quantity_input(
	Ptx=(1.e-30, None, apu.W),
	d=(1.e-30, None, apu.m),
	Chu (1 - CO Mana dan) and
E in py	rcraf on master, File is commited. Git branch: master, index: ✓, working: 1≠, Line 1, Column 1

pycraf

- Free & OSS
- Hosted on GitHub
- Powered by Astropy package template
- Well documented
- Many examples
- Contributions welcome!
- pip install pycraf
- conda install pycraf (conda-forge channel)

https://github.com/bwinkel/pycraf

pycraf

- Version: 0.25
- Author: Benjamin Winkel
- User manual: stable | developer

pypi v0.25.8 license GPL DOI 10.5281/zenodo.1244192

The pycraf Python package provides functions and procedures for various tasks in spectrum-management compatibility studies. A typical example would be to calculate the interference levels at a radio telescope produced from a radio broadcasting tower.

Releases are registered on PyPI, and development is occurring at the project's github page.

Project Status

build passing 📀 build passing coverage 92%

pycraf is still in the early-development stage. While much of the functionality is already working as intended, the API is not yet stable. Nevertheless, we kindly invite you to use and test the library and we are grateful for feedback. Note, that work on the documentation is still ongoing.

Features

- Full implementation of ITU-R Rec. P.452-16 that allows to calculate path attenuation for the distance between interferer and victim service. Supports to load NASA's Shuttle Radar Topography Mission (SRTM) data for height-profile generation.
- Full implementation of ITU-R Rec. P.676-10, which provides two atmospheric models to calculate the attenuation for paths through Earth's atmosphere.
- Provides various antenna patterns necessary for compatibility studies (e.g., RAS, IMT, fixed-service links).
- Functions to convert power flux densities, field strengths, transmitted and received powers at certain distances and frequencies into each other.

pycraf

- Free & OSS
- Hosted on GitHub
- Powered by Astropy package template
- Well documented
- Many examples
- Contributions welcome!
- pip install pycraf
- conda install pycraf (conda-forge channel)

https://bwinkel.github.io/pycraf/

pycraf:docs

pycraf v0.25.3 » Page Contents

pycraf Documentation

User Documentation

Available modules

Getting Started

Project details

Acknowledgments

pycraf Documentation

Welcome to the pycraf documentation. The pycraf Python package provides functions and procedures for various tasks related to spectrum-management compatibility studies. This includes an implementation of ITU-R Recommendation P.452-16 that allows to calculate path attenuation for the distance between an interferer and the victim service.

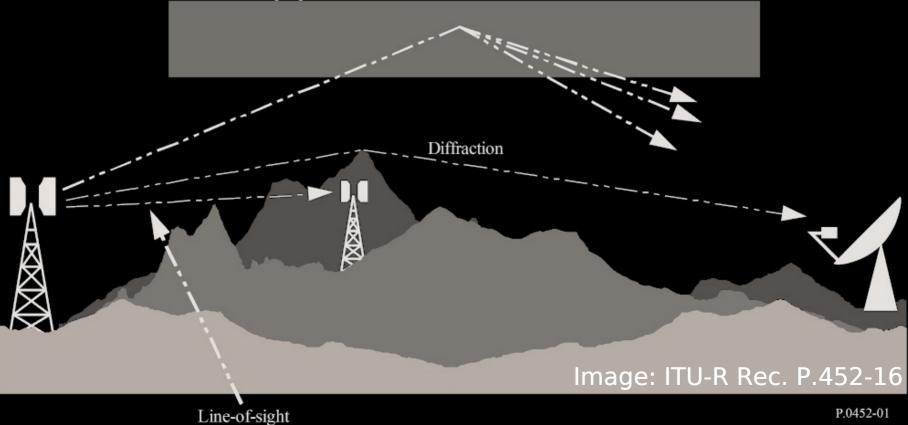
Getting Started

- Installation
- Importing pycraf and subpackages
- Tutorials
 Working with SRTM data

User Documentation

Available modules

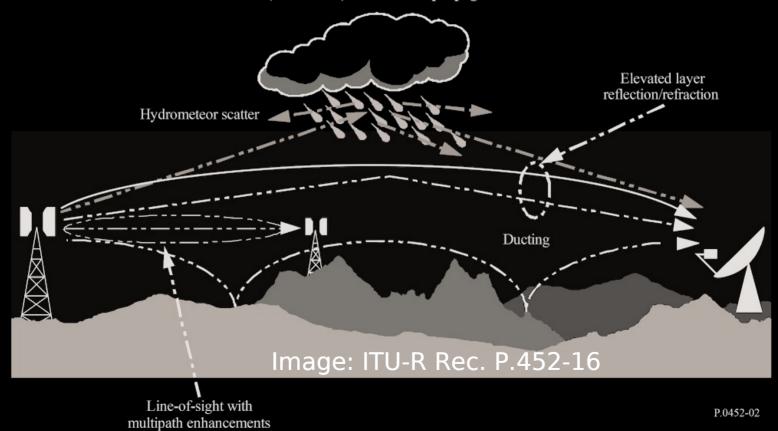
- Conversions (pycraf.conversions)
- Atmospheric models (pycraf.atm)
- Path attenuation, terrain data, and geodesics (pycraf.pathprof)
- Antenna patterns (pycraf.antenna)
- Protection levels (pycraf.protection)
- Geographical frames (pycraf.geospatial)
- Satellites (pycraf.satellite)
- Geometry helpers (pycraf.geometry)
- Monte-Carlo helpers (pycraf.mc)
- Utilities (pycraf.utils)

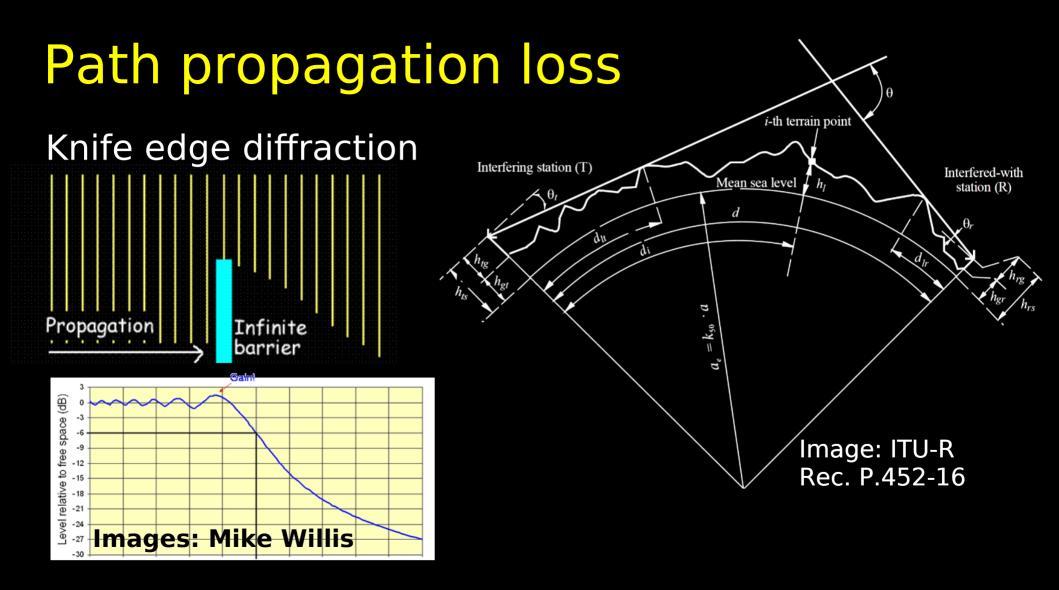

Functions

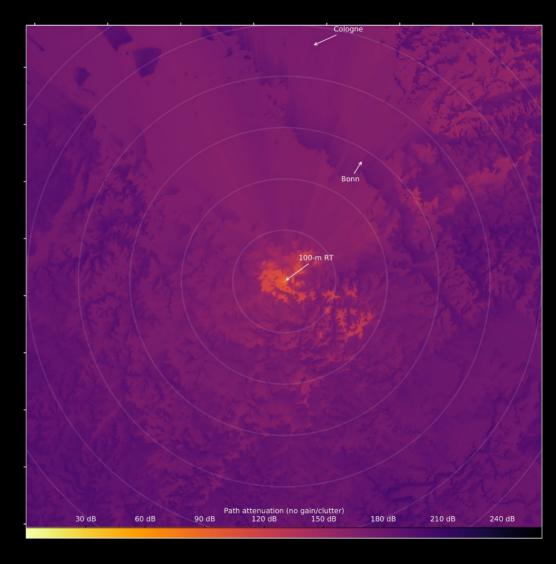
test([package, test_path, args, plugins, ...]) Run the tests using py.test.

Path propagation loss

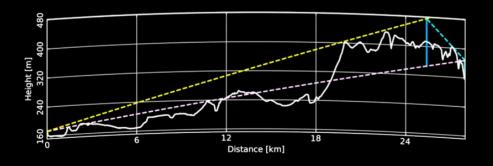
Long-term interference propagation mechanisms

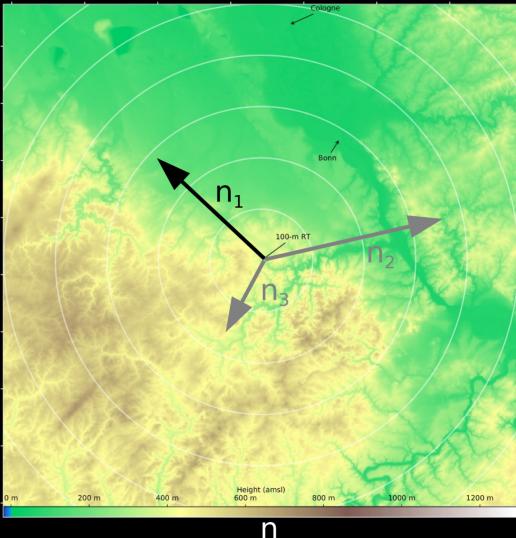

Tropospheric scatter

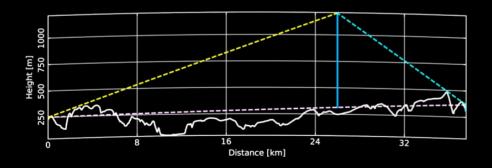


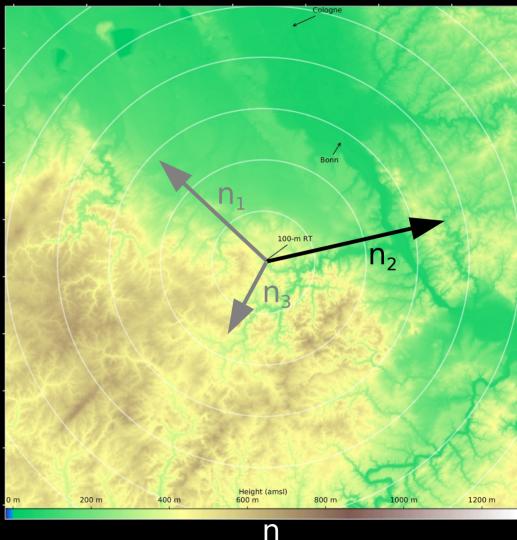

P.0452-01

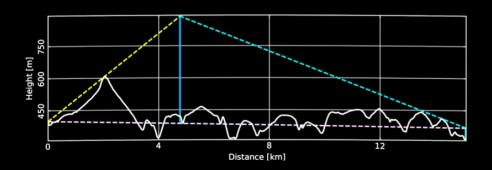
Path propagation loss

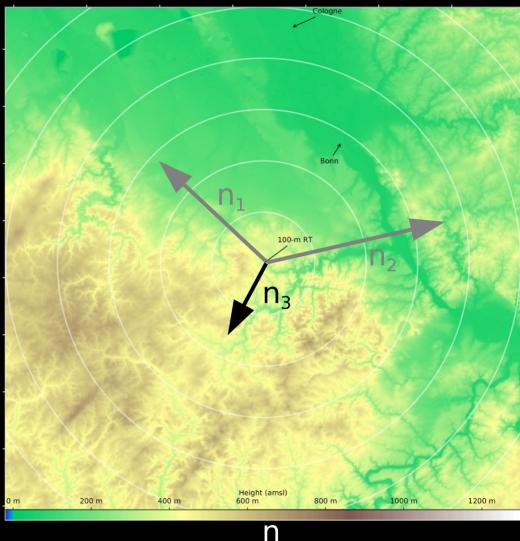

Anomalous (short-term) interference propagation mechanisms

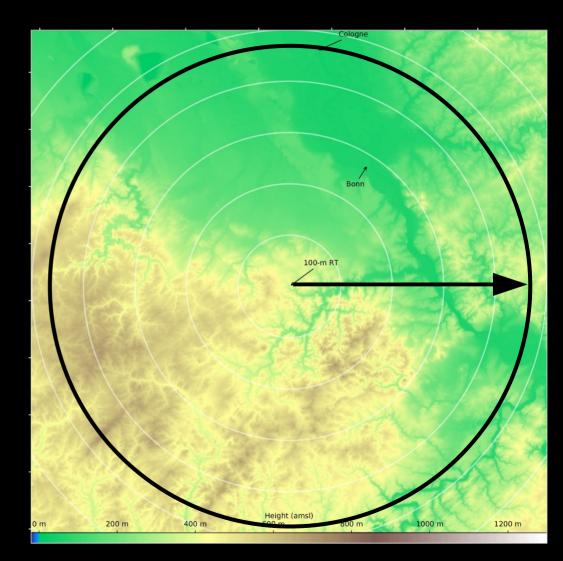


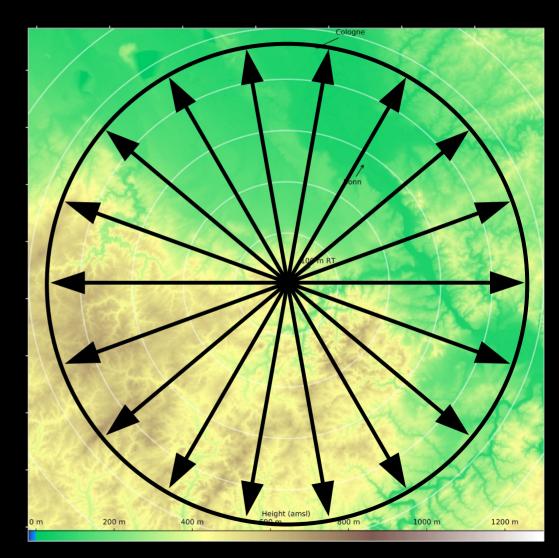

- Query height profiles
- O(n³) problem


n

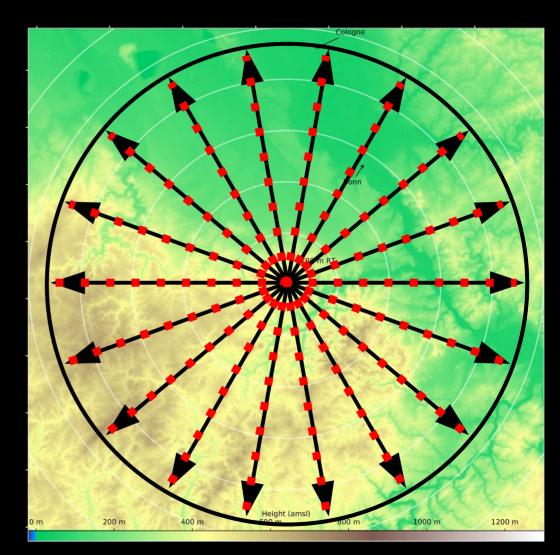

- Query height profiles
- O(n³) problem


n

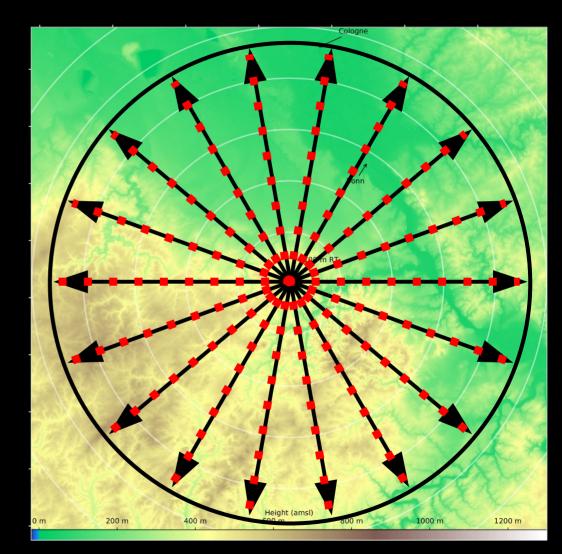

- Query height profiles
- O(n³) problem


n

- Query height profiles
- O(n³) problem
- Memoization

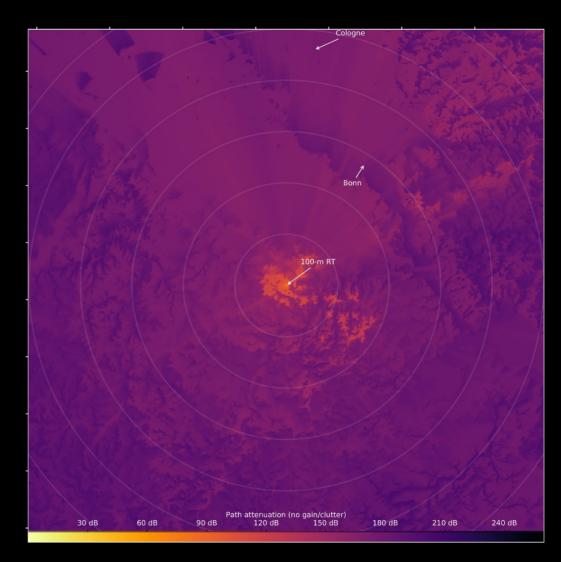


- Query height profiles
- O(n³) problem
- Memoization



- Query height profiles
- $O(n^3) \rightarrow O(n^2)$ problem
- Memoization

 → Look-up table
 (can be stored on disk)



- Query height profiles
- $O(n^3) \rightarrow O(n^2)$ problem
- Memoization
- Parallelization
 - \rightarrow Cython

- Query height profiles
- $O(n^3) \rightarrow O(n^2)$ problem
- Memoization
- Parallelization
- Cython

1–2 dex faster than other implementations

Conclusions

- Spectrum management is vital for radio astronomy
- Python package, "pycraf", for compatibility studies
- First optimize algorithms, then code

Backup slides

World Radiocomm. Conference

- Updates radio regulations
 - Frequency table
 - Footnotes
 - Procedures
- Meets every 3–4 yrs
- Decides on "Agenda Items" (for next WRC)
 - Als are studied in working groups
 - Changing RRs needs \ge 5 years

10.7-11.7 GHz

Al	0	ca	ti	on
ta	b	es		

Allocation to services							
Region 1	Region 2	Region 3					
10.7-10.95 FIXED FIXED-SATELLITE (space-to-Earth) 5.441 (Earth-to-space) 5.484 MOBILE except aeronautical mobile	10.7-10.95 FIXED FIXED-SATELLITE (space-to-Earth) 5.441 MOBILE except aeronautical mobile						
10.95-11.2 FIXED FIXED-SATELLITE (space-to-Earth) 5.484A 5.484B (Earth-to-space) 5.484 MOBILE except aeronautical mobile	10.95-11.2 FIXED FIXED-SATELLITE (space-to MOBILE except aeronautical f						
11.2-11.45 FIXED FIXED-SATELLITE (space-to-Earth) 5.441 (Earth-to-space) 5.484 MOBILE except aeronautical mobile	11.2-11.45 FIXED FIXED-SATELLITE (space-to MOBILE except aeronautical to						
11.45-11.7 FIXED FIXED-SATELLITE (space-to-Earth) 5.484A 5.484B (Earth-to-space) 5.484 MOBILE except aeronautical mobile	11.45-11.7 FIXED FIXED-SATELLITE (space-to MOBILE except aeronautical f						

ITU-R Radio Regulations 2016

10.7-11.7 GHz

		Allocation to services	
Allocation	Region 1	Region 2	Region 3
	10.7-10.95	10.7-10.95	
tables —	FIXED FIXED-SATELLITE	FIXED FIXED-SATELLITE (space-t	o-Earth) 5.441
Ladies	(space-to-Earth) 5.441 (Earth-to-space) 5.484	MOBILE except aeronautical mobile	
	MOBILE except aeronautical mobile		
	10.95-11.2	10.95-11.2	
Oneweb &>	FIXED FIXED-SATELLITE	FIXED FIXED-SATELLITE (space-to-Earth) 5.484A 5.484B	
	(space-to-Earth) 5.484A 5.484B	MOBILE except aeronautical	
SpaceX/Starlink	(Earth-to-space) 5.484		
	MOBILE except aeronautical mobile		
	11.2-11.45	11.2-11.45	
	FIXED	FIXED	
	FIXED-SATELLITE	FIXED-SATELLITE (space-t	
	(space-to-Earth) 5.441 (Earth-to-space) 5.484	MOBILE except aeronautical	mobile
	MOBILE except aeronautical		
	mobile		
	11.45-11.7 FIXED	11.45-11.7 FIXED	
	FIXED FIXED-SATELLITE	FIXED FIXED-SATELLITE (space-t	o-Earth) 5.484A 5.484B
	(space-to-Earth) 5.484A 5.484B (Earth-to-space) 5.484	MOBILE except aeronautical	
	MOBILE except aeronautical		
ITU-R Radio Regulations 2016	mobile		

IMT2020 / 5G

New spectrum requested (WRC-19 cycle; AI 1.13)

- 24.25-27.50
- 31.80-33.40
- 37.00-40.50
- 40.50-42.50
- 42.50-43.50
- 45.50-47.00

- 47.00-47.20
- 47.20-50.20
- 50.40-52.60
- 66.00-76.00
- 81.00-86.00
 - GHz

IMT2020 / 5G

New spectrum requested (WRC-19 cycle; Al 1.13)

- 24.25-27.50
- 31.80-33.40
- 37.00-40.50
- 40.50-42.50
- 42.50-43.50
- 45.50-47.00

- 47.00-47.20
- 47.20-50.20
- 50.40-52.60
- 66.00-76.00
- 81.00-86.00

GHz

Potentially affecting RAS

IMT2020 / 5G

New spectrum requested (WRC-19 cycle; Al 1.13)

- 24.25-27.50
- 31.80-33.40
- 37.00-40.50
- 40.50-42.50
- 42.50-43.50
- 45.50-47.00

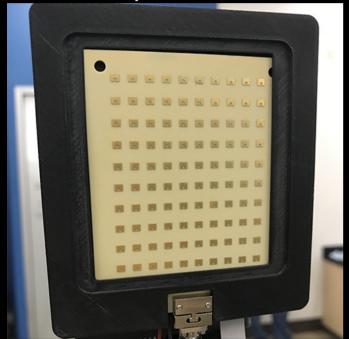
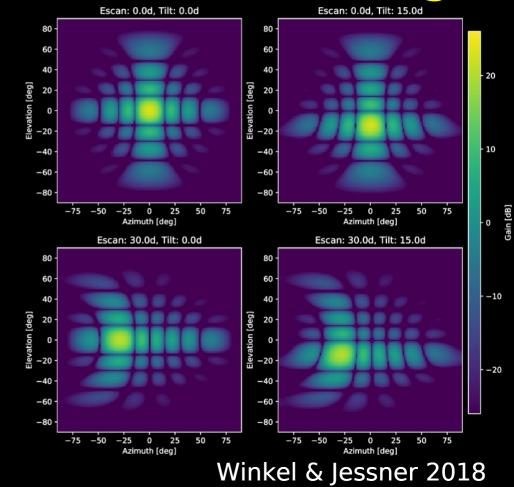
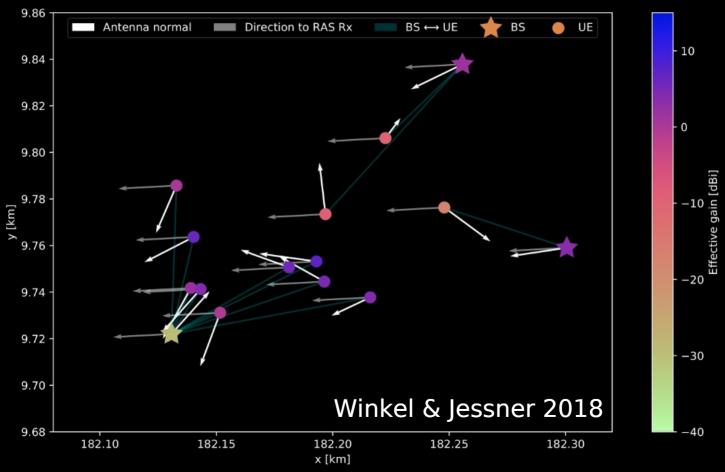
- 47.00-47.20
- 47.20-50.20
- 50.40-52.60
- 66.00-76.00
- 81.00-86.00

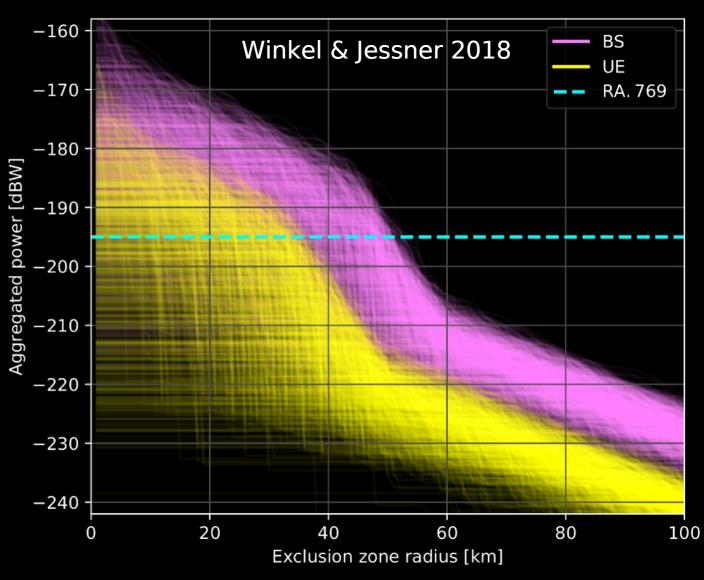
GHz

Potentially affecting RAS Favored by Europe

5G base stations: beam-forming

28 GHz, 8x8


Image: UCSD

Aggregation: simulating a network

5G: results

