

Firefly,
Python,

JupyterLab

and the Science Platform

Science Platform

• Concept is catching fire in astronomy community

• Working definition of Science Platform in nutshell
- Login to a Jupyter Lab/Hub environment
- Appropriate software and APIs
- Close data is archived
- Processing close to the data
- Usually with python.

• Our Goal:
- Leverage out work with Firefly to make this environment more

powerful

New Ways to Work

Firefly Jupyter Lab+ Python + = Science
Platform

Powerful

Table DisplayFits Viewer
• WCS Readout
• Zoom
• Flip/ Rotate/ Crop
• Color / Stretch
• Grid
• Region
• Magnifier
• Distance tools
• Markers
• Fits Headers
• Crop

• Sort / Filter
• Column Controls
• Large tables, 1O Million+ rows
• Very fast response time
• brushing and linking

• Interactive
• Column math
• Zoom
• Filter

Charts

• Full HiPS Support
• MOC
• Tightly integrated
• Shares all FITS functions

HiPS Viewer

Firefly Components

Catalog Search

Planck

Wise
Spitzer

Irsa Viewer

Finder Chart

Herschel

Time Series
Firefly
Library

Backend

- Java
- Tomcat
- Scalable

‣ Multiple instances

- JSON to Client

‣ GET, POST, Websocket

- Docker and Kubernetes

Code Overview
Firefly Archive Visualization Library

Frontend
- JavaScript
- Modern JS

‣ ES6+, Modules
‣ NPM
‣ Webpack

- React/Redux
- Converted from GWT

‣ 2015 - 2016

Frontend & Backend:
~245K Lines of code

Open Source and Releases

• GitHub
- https://github.com/Caltech-IPAC/firefly

• Releases
- More Formal Process
- Builds on Docker
- Release Notes
- CCB - Yearly Roadmap

• Dockerized
- Start firefly with one command
- Tag for each release plus nightly

Ways to Use Firefly

1.Stand alone
- Install and Run

2.Library for building Web Applications
- Most Advanced: Work at the React/

Redux level
- Many IRSA application built from

Firefly

3.JavaScript API
- Firefly Widgets in a Web page

4.Remote API
- Control a Firefly Application

➡ Key to interfacing with Python
➡ Start application & control it

from Python

Remote API

• Firefly architecture is designed around the command pattern

• Each command tells the system to do something
‣ Plot image
‣ Zoom Image
‣ Rotate Image

• Firefly can also listen for commands over channel

• HTTP communication and Web Sockets

• Commands sent as HTTP request

Remote API

Another
Context

Examples:
• Load a FITS Image
• Load a Table
• Show a Chart
• Sort a table
• Show HiPS

Firefly
Web Server

Firefly
WebApp in

Browser

Action Network (Web socket)
Action: {
type : String,
payload :
{data}

}

Network (http)

JSON Data

Send an Action

Connecting Python to Firef ly

Python Binding

• https://github.com/Caltech-IPAC/firefly_client

• pip install firefly_client

• Connects to the firefly server via URL

• Hides network connectivity

• Implements API to control Firefly from Python

• Can do this in Jupyter Notebook or Lab
from firefly_client import FireflyClient
fc = FireflyClient.make_client(‘firefly url’)
fc.launch_browser()
fc.show_fits(URL=‘some url')
handle = fc.upload_file(a_file)
fc.show_table(handle)

https://github.com/Caltech-IPAC/firefly_client

Jupyter Lab

• Jupyter Lab is Extendable

• Using Various Firefly API we have written extensions
- https://github.com/Caltech-IPAC/jupyter_firefly_extensions

• Firefly will run in a Jupyter Lab tab

• Extensions:
- FITS File Opener
- Visualization Extensions using FireflyClient
- Lab Widgets

• Result: A very integrated system

https://github.com/Caltech-IPAC/jupyter_firefly_extensions

TO SHOW THIS

DOUBLE CLICK HERE

CLICK HERE TO BRING UP FIREFLY
IN A LAB TAB

NOTEBOOK

PRODUCES THIS DISPLAY

What went well

Lesson learned: Jupyter Lab Extension

• Concept completely worked - Jupyter Lab is very flexible

• Lab uses modern JS build tools such as NPM and Webpack
- Works with Firefly well.

• Lab did not conflict with Firefly - impressive for a complex tool

• We discovered issues with Firefly
- Good way to test and improve the API

• We went though an upgrade cycle- is was fairly painless

Challenges

Lesson learned: Jupyter Lab Extension

• Very little extension documentation

• Difficult to do some fairly straight forward extension development
- Look at examples (are the example correct?)
- Get on Gitter, ask questions and hope someone will answer
- Go thought the Lab code

• Extension development went slow

Firefly / Python / Jupyter Lab

• A lot of potential

• Fits nicely into a Web based Science Platform

• Opportunity to design many custom visualizations

• Much, much more we can do

