Scientific Visualization of Extremely Large Distributed Astronomical Surveys

Sweta Singh(MSc. Student)

Supervisors: E.A. Valentijn, A. Belikov, H. Buddelmeijer

Introduction

- Euclid Space Mission (ESA-M)
 - Extra galactic surveys (visible, infrared, spectroscopy)
- 10's of PB data
- Collaborators all over the world
- Multiple Science Data Centers

image source: ESA website

Multiple Use Cases - status of processing, data release etc.

Challenges

- Need a Distributed Visualization framework
- SDCs (heterogeneity)
- Network between SDCs from 10s to several 100s Mbps
- Data availability/Progress according to Observation Plan
- Scalable, Flexible, Future proof framework

Two prong approach \rightarrow reduce the data size (optional) and

→ enable distributed visualization

Visualization Framework

- Real time, Interactive
- Desktop feel but no copy

HiPS Survey

HiPS is a hierarchical tiling mechanism developed by CDS (P.Fernique et al, A&A 578, 114, 2015)

It enables multilayer visualization

- HiPS is the defacto standard for survey maps
- HiPS is http compliant

Fully Distributed Visualization

Visualization in practice

Virtual Machines as SDCs

Virtual Machines as SDCs

Conclusion & future steps

- → Successfully developed and demonstrated distributed visualization framework for very large surveys
- → Our framework works on heterogenous SDCs.
- → Data size reduction using png instead of pure fits for hips survey generation has been explored
- → It is also applicable to big, collaborative project like SKA
- → It is being implemented on OmegaCen server nodes as SDCs
- → Performance and Monitoring using ELK stack is in progress
- → Further framework optimisation using caching and key value stores like cdb is being explored
- → We are on our way to implement the framework for Aladinlite, as it works on the desktop version

Thank You!

extra

Architecture

Distributed Network Mode

Reverse Proxy Network Mode

example.hips index.html Moc.fits properties HpxFinder metadata.xml Moc.fits Norder3 Norder4 Norder5 properties Norder3 Allsky Dir0 - Npix68 Norder4 Dir0 - Npix274 Norder5 Dir0 __ Npix1098 Npix1099 Norder3 Allsky.fits Dir0 Npix68.fits Norder4 Dir0 Npix274.fits Norder5 Dir0 Npix1098.fits Npix1098_w.fits Npix1099.fits Npix1099_w.fits

HiPS Survey

- HiPS is http compliant allows it to be accessed via http server
- Simple Hierarchical Tree structure with directories and files

LAMP Stack

- 1. Linux \rightarrow open source(free), reliable(virus free)
- 2. Apache \rightarrow most popular, open source, reliable, secure, fast, http,
- 3. MySQL \rightarrow simple, sql, open source
- 4. PHP → open source, server side(code executed on server side), scripting language, communicate with MySQL

