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Quasars

-Originally discovered in radio survey (3C) in 1950s;
first identified as star-like optical sources with
emission lines in 1963; Maarten Schmidt (1963)
realized the redshift of 3C 273 (z=0.158)

‘First named simply as "quasi-stellar radio sources”,
shorten to “"quasars” by Hong-Yi Chiu (1964),
accepted by ApJ in 1970

the most distant known quasar is at redshift
z=7.085 (Mortlock, D. J.; et al. 2011,Nature)




- AGN

- Pointed sources

* Powered by central black hole
* High redshift (0.1~7)

* High luminosity~10"42-10"46erg/s
* Luminosity variability

» Full spectrum emission

Credit: ESO/M. Kornmesser

- Strong, broad emission line spectra



3C 273 and its Jet e SpuceTelaupe

30 Mew Tec lowlegy Telescope

Quasar Host Galaxies HST « WFPC2
PRCY96-35a + ST Scl OPO » November 19, 1996
J. Bahcall (Institute for Advanced Study), M. Disney (University of Wales) and NASA
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The first quasar and the cosmic reionization




Photometric redshifts (photo-zs)

Photo-zs are determined from For example, SDSS

the fluxes (or magnitudes or ’

colors) of galaxies through a set Spectra:r<17.7 1.6M
of filters sources

May be thought of as redshifts from Photo: r < 21+360M
(very) low-resolution spectroscopy sources

Photo-z’ are needed in particular
when it’s too observationally
expensive to get spectroscopic
redshifts (e.g., if galaxies are too
many or too faint)

Well-calibrated photo-z’s are a key
ingredient to obtaining cosmological
constraints in large photometric
surveys like DES and LSST




29|

0

20 |

20 |
15}
10|

5

Eﬂi
5|
o]
d

ol .
2000 4000 6000 8000

k

i

2000 4000 6000 8000

Wavelength (4)

| :ﬂ.ul=l— 14 ]
1hg=5

10000

Wavelength (A)

HAu=—26
tAg=-6 |
‘Ar=16 ]
iAi=6 ]
Az==10]

10000

B e T

<0

15

10

51

0

2000 4000 6000 8000 10000
Wavelength (4)

20

z=EiH : : : :ﬂu=53 ]

i 8 Iﬂg=? ]

20 : {Tﬁ ; ' Ar==25 ]
; | Pﬁ 1Ai=5 ]

15 . :ﬁ!=—33_

10

5

0

2000 4000 6000 8000 10000
Wavelength (4)







Large Optical Sky Quasar Surveys

* Palomar-Green (PG) Bright Quasar Survey (BQS):
B<16, 10000 deg”"2, ~120 Quasars (~7%)

* Large Bright Quasar Survey (LBQS): B<17.5, ~10"3
quasars

2dF: 200 deg”2, U-V<-0.3, ~2.6x10"4 quasars

*Sloan Digital Sky Survey(§DSS):~5.3x10"5 quasars

*LAMOST survey:~5x10"4 quasars




Photometric survey

UV:  GALEX at 1530 A°(FUV) and 2310 A° (NUV)
OpticaI: SDSS (u 3551A, g 4686A, r 6165A,1 7481A, z 8931A)

Pan-STARRS (84866 A%, 16215 A°,i 7545 A°, 28679 A",y 9633 A”)
LSST(u, g, r,1,z,and y )
Infrared: 2MASS at J-band (1.235 um); H-band
(1.662 um); Ks-band (2.159 um),
WISE at 3.4, 4.6, 12, and 22 um (W1, W2,
W3, W4) (W1,W2, W3, W4)
UKIDSS (y,3,h,k)
----¢tcC.



Methods for Photometric redshifts

* Template fitting

* Machine learning /training
set/empirical methods

In the era of astronomcal big data, ML is a must!



Template fitting

 Model SEDs are being redshifted by

Mz) = Arest(1 + z) for various values of z.

* Then the spectrum is projected through the filter
throughputs to obtain a simulated photometric

observation of a galaxy with that SED.

e Searches for the minimum value of the difference

between observed colors and synthetic co

lors

derived from model (or template) SEDs.. .

N filters

2 Z (Fnbs.k e SEDk(E)

(T
k=1 "

» Template: synthetic or observed

).




Pros and cons of Template fitting

* Physical meaning 1s obvious.

« Easy to explain.
* Go very deep, well beyond the spec-z limat.
* No training set needed.

« Arbitrary choice of template, lots of assumptions
on physics, strong dependence on zero points

 Not too accurate.



Machine learning

ML 1s an application of artificial intelligence (Al)
that provides systems the ability to automatically
learn and improve from experience without being
explicitly programmed.

Need to learn or train and obtain a relation
between photometric observables of a galaxy and
1ts spec-z.

A subset of the objects as training set, their spec-
zs are known.

Training set, test set, validation set.



Pros and cons of ML

e More accurate

* No assumptions on physics, almost
independent on zero points, photometric
calibration, etc.

 Daifficult to understand
* Bounded by the spec-z limit
» Unreliable extrapolation

» Retraining for every survey



Commonly Used ML

 Polynomial fitting, e.g. Connolly et al. (1995)

* Piece-wise fitting of 2nd order polynomials, e.g. Brunner et al. (1997)
e a linear function of three photometric colors ,e.g. Wang et al. (1998)

* k nearest neighbors, e¢.g. Csabai et al. (2003) ; Han et al. (2016)

* Kernel regression, ¢.g. Wang et al. (2006)

* Support Vector Machines, e.g., Wadadekar (2005) ;Zheng & Zhang
(2012)

* Relevance Vector Machines, e.g., Sanchez et al. (2014)

* Boosted Decision Trees, ¢.g., Gerdes (2009, ArborZ)

e Gaussian Processes, ¢.g., Way et al. (2009)

* Diffusion Maps, e.g., Richards et al. (2009) and Freeman et al. (2009)
 Random Forests, e.g., Carliles et al. (2010)

e Self Organizing Maps, e.g., Carrasco Kind & Brunner (2014)

« Artificial Neural Network , e.g. L1 et al. (2007), Zhang et al. (2008),
Collister & Lahav, 2004

e et al.
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The factors to influence performance of
Photo-Z estimation!

* Data preprocessing (feature
engineering).

* Data quality.
* Algorithmes.
* Separation of training sample.



The DR14Q catalog contains 526,356 unique quasars

Number

336357
SDSS + WISE 261705
Sample Number
SDSS 445958
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Table 1.  Performance of KNN with the SDSS sample by different data preprocessing.
Normalization PCA LASSO 601(%) 0602(%) 603(%)  Orms
62.18 80.00 86.99 0.3344
v 62.03 7998  86.95 0.3349
v vl 62.03 7998  86.95 0.3349
vl 62.09 7998 86.94 0.3349
7 40.57 7230  84.54 0.4594

Table 2.  Performance of KNN with the SDSS-WISE sample by different data
preprocessing.

Normalization PCA LASSO 60.1(%) 0602(%) 603(%)  Orms
78.57 91.10 95.20 0.1983
vl 77.70 90.94 95.20 0.2031
vl vl 77.70 90.94 95.20 0.2031
vl 78.44 01.02 95.18 0.1991
V4 63.16 85.06 93.07 0.2790




Table

data quality

Pertormance of various algorithms for the SDSS-WISE sample with r_6c

Algomhm 00.1(%) 002(%) 003(%) Ty
SVR 69.74 8815 9381 0.2334
XGBoost 7743 90.81 9527  0.2007
KNN 7940 9137 9528 0.1931
RF 7987  91.37 9523 0.1907
better quality data

SVR 7240 9035  95.15  0.016
XGBoost 83.90 9388  96.77  0.013
KNN 86.27 9436  96.719  0.013
RF 86.48 9438  96.76  0.012




3 algorithms
Beter qualy sample

Method 0o (%)  Opa(T)  ya(%) MAE  MSE R2 Time(5)

SVM 7465 9051 95.15  0.193 0092 0.827 353?.45l
LGB 8372 9389 9683  0.088 0013  0.867 34

XGB 835 9388 977 0088 0013 085 5624

KNN 86.27 94.36 96.79 0.078 0013  0.862 10.87
RF 86.48 94 .38 96.76 0.075 0012  0.866 106.36
ET 85.99 94.45 96.88 0.078 0012  0.871 1745

XGB: XGBoost; LGB: LightGBM;NN: k-nearest neighbor;
RF: random forest; ET: Extremely randomized trees
SVM: support vector machine
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3 Seperation of training
sample

- random forest



Original Scheme

“Data Set Algorithm — Model Parameters — 001(%)  do2(%) do3(%) o Time(s)

SDSS RFE  n_estimators=300 6334 8048 §7.34 03271 37628
maz_depth=15

SDSS-WISE RF  n_estimators=300 7987 9137 9523 01907 36762
mazx_depth=2)




Other two Schemes

 Firstly, classification of the sample 1nto two

subsamples according to redshift range (0 <
7z <2.2,z>2.2) or into four subsamples
according to redshift range (0 <z <1.5,1.5
<z<22,22<z<3.5,2>3.5) by random
forest

* Secondly, create regressors to predict the
unknown samples.
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Table 3 Performance of photometric redshift estimation for different datasets with random
forest after classifying one sample into two subsamples by random forest,

Data Set (Testset) ~ Algorithm ~ Model Parameters ~ 00.1(%) 002(%) d0a(%) o

SDSS (TT) RFRF  n_estimators=300 5308 7207 8436 03550
maz_depth=13

SDSS (T2) RERF  n_estimators=300 8477 8955 9031 02810
maz_depth=13

SDSS(TT+T2) 6774 .57 8630 0323

- SDSS-WISE(TT) RFERF i estimators=300 7577 8955 0452 0202
maz_depth=13

SDSS-WISE (T2) RERF  n_estimators=300 9301 9640 9697  (.1660
maz_depth=20

- SDSS-WISE (TI+T2) 3160  9L87T 9535  0.1900
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Table 5 Performance of photometric redshift estimation for different datasets with random
forest after classifying one sample into four subsamples by random forest.

Data Set (Test set) Aleonthm  Model Parameters  dg1 (%)  dg.o(%)  dg.a(%) a
~SDSS (th "RF n_eshimators=200  65.00 7585  80.27 03740
max_depth=15
SDSS (12) RF RF  n_estimators=300  73.81 83.05 87.07 0285
max_depth=15
SDSS (13) RF RF  n_estimators=300 R82.(4 87.16 88.16  0.3131
max_depth=15
SDSS (14) RF RF n_estimators=3)  95.35 06.49 06.68  0.1935
mazx_depth=15
- SDSS (tT+2+53+14) 73.56 8362  B5.82 03213
- SDSS-WISE (i]) RERF  n_estimafors=300 8043 0006 9335 (.I916
max_depth=15
SDSS-WISE (t12) RF RF  n_estimators=300 83.35 0369 9545 0.1860
max_depth=15
SDSS-WISE (t3) RF RF  n_estimators=300 91.95 0548 9626 01770
max_depth=15
SDSS-WISE (14) RF RF  n_estimators=200 97.31 0830 9852 01420

mar_depth=20
SDSS-WISE (t1+2+13+14) 85.33 9301 9497 (.1843
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Table 4.  Performance comparison of photometric redshift estimation with the

SDSS-WISE sample for different schemes.

Scheme Algorithm 001(%) 002(%) 693(%) 0oy

one sample RF 7987 9137 9523
two subsamples RF RF 81.60 91.87  95.35

four subsamples RF_RF by correction 8576 93.28  95.19

0.1907

0.1900
four subsamples RF_RF 8533 93.01 9497 0.1

0.1699

343

RF_RF means that random forest is used to build the classifier and the regressor. R
F_RF by correction represents that they adopted the estimated redshift value from the
regressor with four subsamples but kept the estimated value from one sample by ran
dom forest near the three cutoff points (+0.3) during photometric redshift estimatior
period. The performance metrics of RF_RF by correction all increase compared tc
those with one sample, two subsamples, four subsamples, especially oy reduces tc
0.1699. It is evident that this strategy is effective and applicable when the accuracy o
photometric redshift estimation is improved.
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Improvements on photo-z

More photometric data in other bands

-- UV(GALEX), near-IR(JHK),radio ...

Much more accurate data

Feature selection/extraction/weighting/reconstruction
Better methods/hybrid methods/ensemble methods
Algorithm selection and optimization

How to deal with training sample?

How to get a complete and respective sample?

How to balance between accuracy and efficiency?



Scintific 1ssue

Choice of ML method. (The more
complex method 1s not always a better
solution 1n big data era.)

Data preparation 1s important.
Each step of ML need be careful.

High performance computing and
parallel computing

Team work
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We adopt the quasar sample from the data release 14 Quasar catalog (DR14Q) of the
SDSS-1V/eBOSS (Piris_ef all DIIR). The DR14Q catalog contains 526,356 unique
quasars. Discarding the records which contain default SDSS magnitudes, zWarning =
—1 and full magnitude errors large than 5, the number of the SDSS quasar sample is
445,958. When further getting rid of the records with default W1 and W2, the num-
ber of the SDSS-WSIE quasar sample 1s 324,333. Here all magnitudes are adopted
AB magnitudes. The AB magnitude conversion and extinction correction process 1s
referred to Schindler ef all (201°7). The better quality data are obtained by the limitation
with sciencePrimary = 1, Mode = 1, zWarrning = 0, excluding the records using
flags such as BRIGHT, SATURATED, EDGE and BLENDED, and removing objects
whose magnitude errors are larger than (.2 in five optical bands and larger than 0.3 in
two infrared bands. At this situation, the number of the SDSS-WISE quasar sample
adds up to 261,705.
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Table 2 Performance of photometric redshift estimation of different models for the SDSS
sample with Sm_4c

Algorithm  60.1(%) d0.2(%) do.3(%) o MSE R®  Time(s)

LASSO 3241 43.22 82.05 04977 03777 -0.6983 115

SVR 60.81 79.76 84.33 03709 0.2933 0.0732 1403
NN 59.90 79.11 86.70 03475 0.2411 0.3286 3834
XGBoost 62.30 80.27 87.41 03303 0.2281 0.3908 2819
KNN 62.18 80.00 8699 03344 0.2353 0.3512 137
RF 63.29 80.54 8742 03263 0.2277 0.3887 16574
GK 66.48 81.80 87.53 03169 0.2340 0.4016 115

Table 4 Performance of photometric redshift estimation of different models for the SDSS-
WISE sample with 7m_6¢

Algorithm  00.1(%) d0.2(%)  0.3(%) o MSE  R®  Time(s)

LASSO 50.54 18.87 89.58 03479 0.2085 0.4882 98

SVR 70.85 88.39 93.76 02365 0.1262 (.7422 1336
NN 77.11 90.83 9524 02075 0.1064 0.7935 3749
XGBoost 78.83 91.27 9544  0.1950 0.0989 0.8085 3129
KNN 78.57 91.10 9520  0.1983 0.1036 0.7956 282

RF 79.76 91,33 9537  0.1908 0.0998 0.8036 12944

GK 83.25 92.85 95.61  0.1777 0.0982 0.8179 319




