
Connecting space and time in a multi-messenger landscape: **STMOC** behind the scene

ADASS Groningen – 6-10 October 2019

Pierre Fernique Daniel Durand, Ada Nebot, Thomas Boch, FX Pineau, Matthieu Baumann and others contributors

A few Space-Time use-cases

What is the 2MASS mission coverage in space & time ?

What are the list of catalogs having data for my list of SN detections (time and position)?

Are there coincidental observations in space and time for XMM and Chandra missions ? Which observations are available for this Gravitational Wavelength probability area detected at this epoch ?

Time and Space in astronomy

Space and Time already the two main index of the astronomical data centers and archives

But:

- Heterogeneous space reference systems (Gal, Eq, ...)
- Heterogeneous time reference systems (TDB, TCB, TT, ..)
- Heterogeneous DB systems (SQL, TAP, asu...)

=> required conversions
=> required multiple syntaxes and translations...

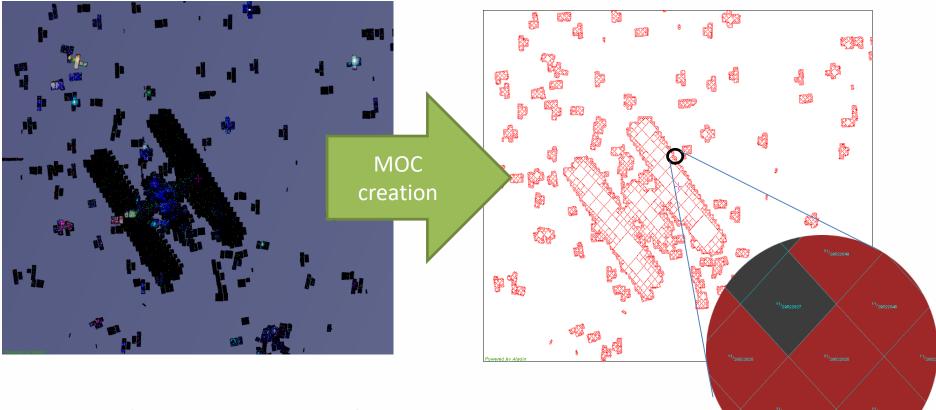
=> Merging results are **complex** and **slow**

The challenge behind these use cases

Determine Where & When + in distributed and heterogeneous data + as fast as possible

= Manipulation of coverages

We already did it for space

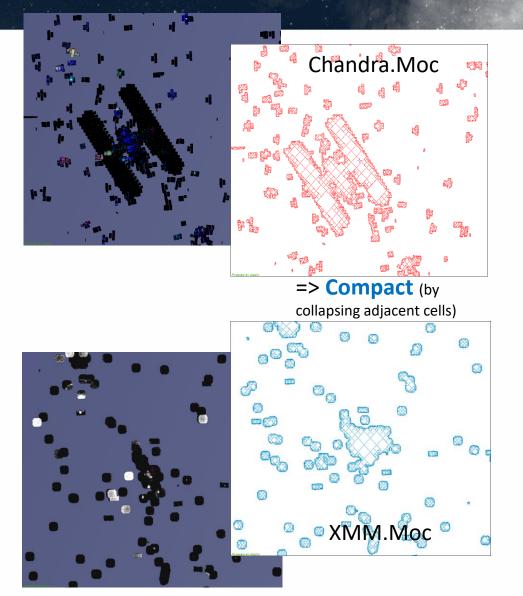

- MOC = Multi-Order-Coverage map
- Presented at ADASS 2012 Urbana
- Standardized in the framework of IVOA in 2014
- Implemented in various tools (Aladin, TOPcat, ...) and already provided by various data providers (Virgo/Ligo, CDS, ...)

=> That works extremelly well

Spatial MOC overview

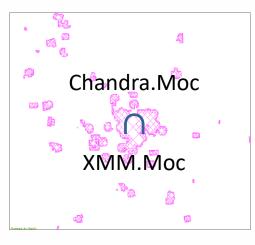
a MOC = a list of numbers

based on HEALPix hierarchy tessellation



...10/34758...11/29522826 29522848

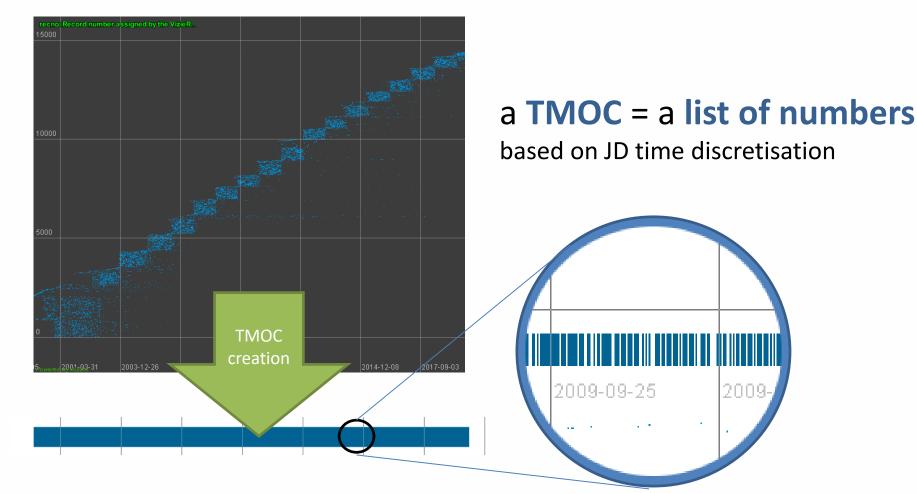
The success keys of MOC


- 1. Discretisation of the space dimension => HEALPix
- 2. A **unique convention** => ICRS
- 3. Multi compatible resolution => hierarchical
- 4. Canonical representation => list of integers
- 5. Simple and fast basic operations (intersection, union, complement, subtraction) => a few ms
- 6. Basic syntax and packaging => ASCII, FITS

MOC in practice

=> Operations are extremely fast => a few ms

(union, intersection, subtraction, compl)

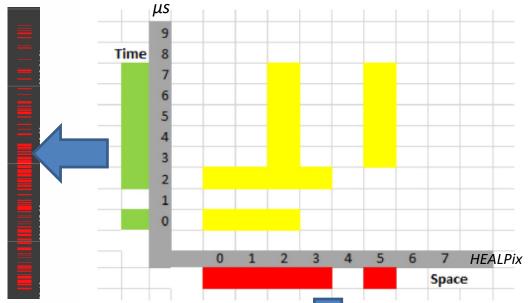

Time Coverage => the idea

- Why not reuse the same winning recipe => TMOC = Time MultiOrder Coverage = A list of hierarchical time numbers
- => Just by reusing MOC lib for Time:
 - Discretisation of the Time dimension
 => Julian Day division
 - 2. A unique convention => TDB, Barycentric, no offset

- TMOC conventions:
 - JD(TDB,Barycentric,no offset)
 - Order 29 -> 1 μs TMOC resolution
 - Allow to describe 9133 years from JD=0

Time MOC overview

...13/34758...29/295226295248 ...


2009

When AND Where !

- Where OR When not enough
 => We need Where AND When
- The STMOC = Space Time MultiOrder Coverage
- Merge together both dimensions in a unique MOC in order to have simultaneously space and time coverage

STMOC concept & challenge

- (S)MOC = a list of numbers (red)
- TMOC is also a list of numbers (green)
- **STMOC** is the 2D table of numbers (yellow)

=> The challenge: How to describe and manipulate a 2D table efficiently

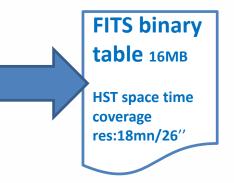
IVOA Groningen - Sept 2019 – P. Fernique

STMOC study

How to manipulate efficiently a potentially huge 2D matrix ?

- 1st try: Global hierachical numbering (= MOC 1D)
 => Force to use the same resolution for space and time
 => not a good idea !
- 2. 2nd try: Two independent numberings (= MOC 2D)
 => Time and Space resolutions unattached
- + Coding a la « Battleship »

Space-Time-MOC overview


a **STMOC** = a list of numbers (time coverage – based on JD discretisation) Each of them pointing to a list of numbers (space coverage – based on HEALPix disc.)

...t13/3475 s29/2952295248 ...t13/6389 s28/..

Size and performance

- STMOC generation from a catalog of 211K sources (ACS/HST observations) Using RA,DE,JD
 - T-Order 10 (3d), S-Order 10 (3.4') => 0.25s, 313KB
 - T-Order 14 (18mn), S-Order 13 (26") => 0.8s, 1.6MB
 - Using FoV,JD
 - T-Order 10 (3d) S-Order 10 (3.4') => 9.8s, 654KB
 - T-Order 14 (18mn), S-Order 13 (26") => 59s, 15.6MB
- STMOC operations

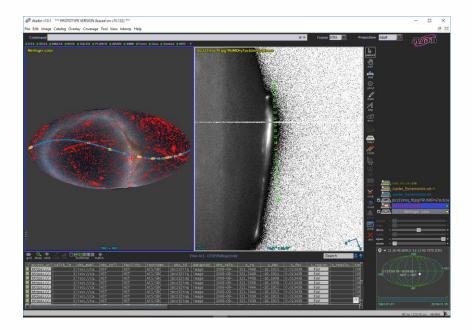
 (unions, intersect., subtrac., compl.)
 => about 2ms to 50ms
- Filtering a catalog by STMOC
 => 300ms for 800K sources => 22K matches

In details

ACS/HST log – 211453 observations

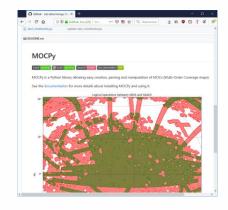
Torder	Sorder	Time resolution	Space resolution	# time ranges	Size	Time to generate				
29	29	1µs	393.2µas	126636	4.2MB	3.4s		Onerati	ons on S	TMOC
20	14	262ms	12.9"	126636	3,9MB	3s		Operations on STMOCs		
14	20	~18mn	201.3mas	70632	2.8MB	2.2s	ACS	Saturn	Union	Inter
14	14	~18mn	12.9"	52732	1.8MB	1.4s	29/29	29/29	19ms	11ms
14	10	~18mn	3.245'	43843	1.4MB	1.2s	14/20	20/14	8ms	3ms
10	14	~3d4h	12.9"	1856	498KB	0.3s	14/14	14/14	5ms	2ms
10	10	~3d4h	3.245'	1854	314KB	0.27s	10/14	14/10	13ms	26ms
3	3	~143y	7.329°	1	342B	0.4s	3/3	3/3	Oms	0ms

Saturn ephemerid – 20K positions


Catalog	filtering	by STMOC

Torder	Sorder	Time	Space	# time	Size	Time to	STMOC	Catalog	Time	Matches
Toruer	Soluei	resoluation	resolution	ranges	3120	generate	ACS 14/14	Saturn	30ms	4
29	29	1µs	393.2µas	19994	625KB	92ms	Saturn 14/14	ACS	75ms	23
20	14	262ms	12.9"	19994	625KB	83ms				
14	20	~18mn	201.3mas	19994	625KB	77ms				
14	14	~18mn	12.9"	19994	625KB	51ms				
14	10	~18mn	3.245'	19994	625KB	98ms				
10	14	~3d4h	12.9"	3143	353KB	47ms				
10	10	~3d4h	3.245'	3076	197KB	47ms				
3	3	~143y	7.329°	2	532B	26ms				16

A use case in live (video)


I want to find **HST ACS** observations matching a **Jupiter** ephemerid

Please in a few seconds...

Creating and using STMOC ?

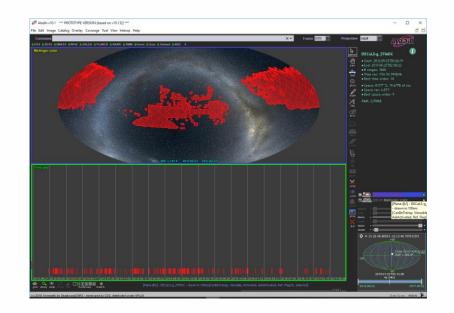
- **Doc: IVOA note May 2019 -** Daniel Durand, Pierre Fernique, Ada Nebot, Thomas Boch, Francois-Xavier Pineault
 - => <u>http://www.ivoa.net/documents/stmoc</u>
- Tool: Aladin Beta
 <u>http://aladin.u-strasbg.fr/AladinBeta.jnlp</u>
- Python library: MOCpy (M.Baumann)
 => <u>https://github.com/cds-astro/mocpy</u>
- List of STMOCs already generated by CDS => <u>http://alasky.u-strasbg.fr/footprints/STMOC</u>

		STMOCs			
how 10 ~ entrie	5			Search:	
Table ID 🔺	Catalogue name 0	Table name 0	#records (Time min $^{\circ}$	Time max 0
Biassordata lobscore Get STMOC	Associated data in VizieR (G.Landais, 2016)	VizieR Spectra, images gathered in a table	8033403	1970-01-01 00:38:56.436	8579-01-20 08:37:44.003
Bichandra ichandra Get STMOC	The Chandra Archive Log (CNC, 1999-2014)	The Chandra Log (2019-09-22)	19494	1999-08-14 10:44:45.364	2021-02-24 00:01:06.023
Bigevsievs cat Get STMOC	General Catalogue of Variable Stars (Samus+, 2007-2017)	Extragalactic Variable Stars. Catalogue (Vol. V)	10979	1885-08-21 11:57:55.572	1991-04-25 12:04:21.652
Bigevaigeval on Get STMOC	General Catalogue of Variable Stars (Samus+, 2007-2017)	GCVS catalog (GCVS 5.1, version March, 2017)	53626	-4711-04-17 11:59:08:538	-4441-01-23 12:01:20.478
Biocoimoon Get STMOC	Occultation lights curves (Herald+ 2016)	table description	6358	1998-09-12 07:12:59.638	2019-07-27 20:18:05.104
Biswiftiswiftlog Get STMOC	Swift Master Catalog (HEASARC, 2004-)	SWIFT logs	250682	2005-09-08 23:57:08.955	2019-09-20 00:03:03:538
Bivaxivax Get STMOC	AAVSO International Variable Star Index VSX (Watson+, 2006-2014)	Variable Star indeX, Version 2019-09-23	1152414	1585-01-31 11:59:30.378	2132-08-31 12:00:08.651
<u>Bixmmixmmlog</u> Get STMOC	XMM-Newton Observation Log (XMM- Newton Science Operation Center, 2012)	The XMM-Newton Observation log (2019-09-23)	14393	2000-01-17 15:26:49.479	2019-09-16 03:39:52.008
1337/cepheid Get STMOC	Gaia DR1 (Gaia Collaboration, 2016)	Cepheid stars identified in table VariableSummary as classification="CEP"	599	2014-05-03 20:42:41.343	2014-08-16 19:41:08.890

Last but not least...

And now ... we can apply the same mechanism for:

– Alternate dimension => ex: Space-Redshift MOC


iu we continued

- Or even to introduce a third dimension
 - => STE-MOC = Space-Time-Energy MOC

Thanks ! Question ?

Next steps

- Generated STMOCs (from VizieR catalogs, and HiPS)
- Ingested in CDS MocServer:
 => Aladin Resource Tree by Space & Time

 Extend the IVOA MOC standard for supporting TMOC and STMOC
 => see IVOA meeting next days

