Death to IRAF

A world about It...

Image Reduction and Analysis Facility, or on short
IRAF, is a collection of software developed by

e 0o \ Irafterm

3.00E-16[

2.50E-161 \ —
|
2.00E-16 ~ —
1 \
1
| J
1.50E-16 (1 1

Aoy | | |
I ﬁ | 1' '| |
1,00E-16! Hﬂ' ﬂJ H '
q 1 | ? alpha based on NOAD/IRAFNET PC-IRAF Rew
' ‘] ' W) Thi e released version of IRAFG4
Welcome to IRAF, To list the available commands, type ? or 7?7, To get

5. 00E-17T k
detailed information about a command, type 'help <command>', To run a
orr - command or load a package, type its name, Type ‘bye' to exit a 0.000
ge, or logout' to get out of the CL, Type ‘news' to find out [. S |

t is new in the version of the system you are using, T T . T T - T T o T oo=T
frame zoom color region wcs help
| | | 1 The following commands or packages are currently defined: I save image header page setup print exit

4000 6000 dataio, 1._an9uage. obsolete, softools, utilities,
v e dbms, lists, plot, system,
images, noao, proto, tables,
cl> lds9%
cl> displ dev$pix
frame to be written into (1:16) (1):
=346,0218
cl> imstat dev$pix
IMAGE NPIX HEAN STDIEY MIN HAK
dev$pix 262144 108.3 131.3 -1, 19936,
cl> imexam dev$pix
display frame (1:) (1):

Visit https//www,ir,isas, jaxa, jp/ cyamauch/iraf64/ to report problems,

This product includes lts achieved by the IRAFE4 project conducted
by Chisato Yamauchi JAKA) .

- |t Is unintuitive to work with.

- Despite its complexity, not much

‘an end-of-support state, an’

hatallatinne diirina thig ravie
- Community-based Python astronomy software proje

e O localhost @]

ALL/Thanos copy/ Thanos_2.1 - Jupyter Notebook
-2
Y- Jupyter Thanos_2.1 Last Checkpoint: 09/30/2019 (unsaved changes) P Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O
B+ < @ B 4 ¥ MRun B C MW Code =

Because we want to make this code work for any given number of filters, we need to make the program itself be able to
create lists (or later on titles) where to store the data from each file in each filter, so we will use a small trick: exec().
Inf = len(filters)
nn = ['new', 'norm']
fl_li = ['flat', 'light']
dntgtdh = ['data', 'name', 'time', 'gain', 'temp', 'dateobs', 'hdr'l]
for i in range(2): #fl_li
mycode_@ = str('flat_data_' + nnl[i] + '_q = []")
exec(mycode_0)
for j in range(lnf):
mycode_1 = str(fl_li[i] + '_' + filters[j]l + '_q = [1")
exec(mycode_1)
for k in range(len(dntgtdh)):

mycode_2 = str(fl_l1i[i] + '_' + filters[j] +'_' + dntgtdh[k] + '= []; ' + flL_li[i] + '_' + filters[j] + '_qg.append(' + fL_li[i] + '_' + filters[j] + '_' + dntgtdhl[k] +
exec(mycode_2)

mycode_3 = str('all_qg.append(' + fl_li[i] + '_' + filters[j] + '_q)")

exec(mycode_3)

mycode_4 = str('flat_' + filters[j] + '_data_' + nn[i] + ' = []; flat_data_' + nn[i]l + '_qg.append(flat_' + filters[j] + '_data_' + nn[i] + ')')

exec(mycode_4)

END RESULT: all_q = [dark_q, bias_q, flat_B_q, flat_V_gq, light_B_q, light_V_q]
Note that this is just an example, where two filters were used: B & V.

data_ggwp = []
flat_data_master_q = []
for i in range(1lnf):
mycode_5 = str('flat_' + filters[i] + '_data_master = []; flat_data_master_q.append(flat_' + filters[i] + '_data_master)"')
exec(mycode_5)
mycode_6 = str('data_imggwp_' + filters[i] + ' = []; data_ggwp.append(data_imggwp_' + filters[i] + ')')
exec(mycode_6)

The sape of the files as given in the header.
axis_1 = []

axis_2 [

axis_12 = []

Now we will create a function that will take all the data from the headers that we need and store it in separate lists (one for each category).
def g(x):

all_qlx] [0].append(the_data)

all_qlx][1].append(all_files_names[i])

all_qlx][2].append(int(the_hdr['EXPOSURE']))

all_qlx][3].append(float(the_hdr['EGAIN']))

all_qlx][4].append(float(the_hdr['CCD-TEMP']))

all_qlx][5].append(str(the_hdr['DATE-0BS']))

e O localhost @]

ALL/Thanos copy/ Thanos_2.1 - Jupyter Notebook
—_Jupyter Thanos_2.1 Last Checkpoint: 09/30/2019 (autosaved) @ Logou
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O

B+ x<x @ B 4 ¥ MRun B C M Code

<>
B

Now we want to use the previously defined funtion. For that we need to calssify our files.
dark_search ['Dark Frame', 'dark frame', 'DARK FRAME', 'Dark', 'dark', 'DARK']
bias_search ['Bias Frame', 'bias frame', 'BIAS FRAME', 'Bias', 'bias', 'BIAS']
flat_search ['Flat Field', 'flat field', 'FLAT FIELD', 'Flat', 'flat', 'FLAT']
light_search = ['Light Frame', 'light frame', 'LIGHT FRAME', 'Light', 'light', 'LIGHT']
for i in range(len(all_files)):

hdulist = fits.open(all_files[i])

the_data = hdulist[0].data

the_hdr = hdulist[0].header

if len(the_data) == 0:
print('There is no data in', all_files[i]l, '."')

elif len(the_hdr) == 0:
print('There is no header in', all_files[i], '."')

elif (the_hdr['IMAGETYP'] in dark_search):
g(0)

elif (the_hdr['IMAGETYP'] in bias_search):
g(1)

elif (the_hdr['IMAGETYP'] in flat_search):
g(2 + filters.index(the_hdr['FILTER'].upper()))

elif (the_hdr['IMAGETYP'] in light_search):
g(2 + Wnf + filters.index(the_hdr['FILTER'].upper()))

Since we need all the files to have the same shape, we ought to check it before we lose time running uselessly the code.
In the case the files do not match in shape, a list with all the files and their shapes will be displayed in order to help the
user see what he/she is dealing with.
axis_12 = list(zip(axis_1, axis_2))
if len(set(axis_12)) != 1:
print();print('Sorry, but not all the files have the same length... You need to either ommit some or correct them.')
print();print('This is a list with all the files and their sizes:')
for i in range(lnf):
print(all_files[il, ' ' * (29 - len(all_files[il)), axis_12[i])
prunt('Plese restart the program with the new files.')

Goal: master bias
Note that we use the median of all the bias frames AS AN ARRAY.
bias_data_master = np.median(bias_data, axis=0)

e O localhost @]

ALL/Thanos copy/ Thanos_2.1 - Jupyter Notebook
: Jupyter Thanos_2.1 Last Checkpoint: 09/30/2019 (autosaved) e Logout
File Edit View Insert Cell Kernel Widgets Help Trusted |Python 30
B+ < & B 4 ¥ MHRun B C M Code =

Secondary goal: master dark (Fus Ro Daaah)
Note that we use again the median AS AN ARRAY.
dark_data_master = np.median(dark_data_new, axis=0)

The dark/sec is given by the division of the master dark by the maximum (which is now 'standard') exposure time.
dark_per_sec = dark_data_master / np.max(dark_time)

Goal: master flat & corrected image(s)
Now we get to work with the flat fileds and the light frames. Since we need to work with them one filter at a time,
a for loop would be helpful. We will start with the flat fileds.
We need to subtract the bias and perform the dark subtraction.
for i in range(1lnf):
for j in range(len(all_ql2+i][0])):
flat_data_new_q[il.append(all_q[2+nf] [0][j] - bias_data_master - (dark_per_sec * np.array(all_ql[2+lnf][2]1[j1)))

We measure the light as a signal: more light, bigger numbers.

So when one shoots the flat fields, the longer it takes for the

set to be shot, the more light will be in the images (daaah...).

But there is one thing that stands out: since they are shot either in the

evening or in the morning (not too much light, not too less), they will definetly have either less
and less signal (sun setting down) or vice-versa (sun rising up).

This is why, after we 'cleaned-up' the images, we have to divide them by their

own median in order to expect any other frame besides the one in the centre to

be the median.
or j in range(len(flat_data_new_ql[il)):

flat_data_norm_q[i].append(flat_data_new_qlil[j] / np.median(flat_data_new_qlil[j]))

= HHHHRHHHR

Divide the median (AS AN ARRAY) by its own mean.
flat_data_master_ql[i] = (np.median(flat_data_norm_q[il) / np.mean(np. median(flat_data_norm_ql[i])))

'Clean' the image(s) (remove bias, perform the dark subtraction), then divide by the master flat.
for j in range(len(all_qgl[2+lnf+i] [0])):
data_ggwpl[il.append((all_g[2+Wnf+i]l [@] [j] - bias_data_master - (dark_per_sec * np.array(all_ql[2+Wnf+i] [2][j]1))) / flat_data_master_ql[i])

Because democracy...

color = input('Do you want to see the images using "jet" or just in black and white (j/b)?')
if color == 'j': colour='jet'

if color == 'b': colour='gray'

centoventi = input('(If you will opt to visualize any images later on,) would you want to see them unaltered or with'
'a specific percentage of their upper and lower values being cut (this makes the dimmer objects in'
'the frame much brighter, but will take a few extra minutes) (u/a)?"')

'Jupyter Thanos_ 2.1 Last Checkpoint: 09/30/2019 (autosaved)

Jupyter
Notebook

Thanos_2.1

190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000

022.FLAT.fits

190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000

063.fits

190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000

069.fits

190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000

017.FLAT.fits

023.FLAT.fits

064 fits

070-fits

018.FLAT.fits

024.FLAT.fits

065.fits

072 fits

019.FLAT.fits

025.FLAT.fits

066.fits

073 fits

SROImage

020.FLAT.fits

061.fits

067.fits

SADImage

074 fits

R filter_1

021.FLAT fits

062.fits

068.fits

075 fits

SADImage SADImage SADImage SA0Image SA0Image i
190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li 00000 190416_Li_00000 190 -
076 fits 077fits 078 fits 079.fits 080.BIAS fits 0 . Final R

190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190:

082.BIAS fits

190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190:

089.BIAS fits

190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190410
062_corrected.fits 063_corrected.fits 064_corrected.fits 065_corrected.fits 066_corrected.fits 067_corrected.fits

190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000 190416_Li_00000

083.BIAS. fits

090.BIAS fits

085.BIAS. fits

091.DARK fits

086.BIAS fits

092.DARK fits

SAOImage

087.BIAS fits

SADImage

093.DARK fits

SADImage

0i

061.

e (5

U\chu

NEQ ~arractad fite NEO ~nrractad fite N7N ~orractad fite N792 corractad fite N72 ~nrractad fite NT7A _~arractad fite

- the ability to use files from different
folders and auto-select those that are

viable

- the ability to work with any filters,
regardless of their type or number,
by creating individual, specially
named lists containing the
respective data sets, thus making
easy for the user to search through
them

- performing data reduction

- sorting them based on the their
type (bias frames, dark frames, flat
fields or light frames) and (for the
last three ones) also on the filters
used when capturing them

- viewing the obtained frames with
the option to cut a percentage of the
top/lower values in each, thus
making the analyzing process easier
by not occupying a range of the
colors that can be displayed with
unimportant values (counts)

- shifting the obtained frames and
(after letting the user chose one for
reference) compiling them into a
single one

- repeating the above procedure for
the resulted shifted frames and
obtaining a single, final, frame

- saving by choice any of the
obtained frame with a conclusive
name

e O localhost &

ALL/Thanos copy/ Thanos_2.1 - Jupyter Notebook
_Jupyter Thanos_2.1 Last Checkpoint: 09/30/2019 (autosaved) @ Logou
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O

B+ < @ B 4 ¥ MRun B C MW Code

<>
B

In [1]: from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))

In [322]: %matplotlib inline
import os
from astropy.io import fits
from matplotlib.pyplot import figure, show
import matplotlib.pyplot as plt
import numpy as np
from scipy.ndimage import interpolation as interp
from mpl_toolkits.mplot3d import Axes3D
from skimage.feature.register_translation import (register_translation, _upsampled_dft)
import matplotlib

Here we just want to get the path/paths to the directory/directories where the files are located.
path_list = []
print('This program will filter a provided set of images (light frames).');print(); print()

yn@ = input('Is this program located in the same folder as (all) the files (y/n)?')

if yno == 'y':
path_list = ['.']
if yn@ == 'n':
ynl = input('Then, at least, are all the files located into the same folder (y/n)?')
if ynl == 'y':
path_list.append(str(input('Then what is the (relative of full) path to that folder?')))
if ynl == 'n':

print('Then what is the (relative or full) path to each folder (one at a time and when done, press enter)?')
while True:
answ_0 = str(input())

if answ_0:
if answ_0[-1] == '/': # juuuust to make sure...
path_list.append(answ_0)
else:

answ_0 += '/'
path_list.append(answ_0)
else:
break x
print('There are', len(path_list), 'paths given above.') |

Now we want to get the files from this/those direcotry/directories.
all_files = []
ange(len(path_list)):
d, f in os.walk(path_list[i]): # r=root, d=directories, f=files

All_combined

500 1500 2000 2500

Thanos - the show must go on

- a more comp
the individual f

ete description of
les in their headers /,,

Thank you...

