Implementation feedback of the IVOA Provenance data model

Goal

Following the IVOA Provenance data model (ivoa.net/Documents/DM/Provenance) we have implemented a PROV-TAP service tracing the provenance of HiPS representations of the HST data products based on the metadata and knowledge provided by the Canadian Astronomical Data Center (CADC).

We present the building blocks of this service and illustrate how queries can be submitted and how results can be interpreted.

Due to the complexity of queries with ADQL in the relational database we tested various tree-based solutions with collaborators: TripleStore, Common Table Extensions, and an adhoc ‘graph upon table’ mapping.

CDS Prov-HiPS Database

A Postgres database tracing the processing of HST image data sets has been set-up.

Entities as defined in the IVOA DM instantiate various HST data products: raw images, calibrated then drizzled images and finally the 10 order HiPS tiles within the HST’s HiPS collection. Corresponding transformations of data are stored in the Activity table and bound to their ActivityDescription meta-information explaining which kind of computation was performed. The Parameter values used to run these Activities are also available and queryable from the Parameter table.

Provenance metadata have been extracted from the FITS Headers of HST data products and compiled in order to rebuild the historical track of data production steps in details.

The database is accessed through a TAP/ADQL query interface, based on the PROV-TAP XML schema (https://wiki.ivoa.net/twiki/bin/view/IVOA/ProvTAP).

Provenance tracking for Prov-HiPS

Query response as VOTable in TAPHandle

This work highlights how provenance metadata can be

- extracted from existing data collections to *a posteriori* build provenance services
- represented, named and structured following the IVOA Provenance DM
- queried and accessed through the Prov-TAP protocol
- interpreted with VO applications (TapHandle, Topcat, TapLibrary native web interface, Aladin)

Finally, with IVOA PROV-DM definitions and the TAP protocol we have been able to:

- track back execution flows run in a former project to generate data
- factorize the description of various processing steps and structure processing knowledge within ActivityDescription templates
- convey configuration parameters and their description in order to foster reproducibility

Mireille Louys, F. Bonnarel, D. Durand, A. Egner
mireille.louys@astro.unistra.fr