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Why data science?



Data science is the art of 
drawing Venn diagrams?



Gaia

1.7 billion stars

Click to add text



LSST

40 billion sources 
10 million alerts/night

Click to add text

credit: LSST/NOAO



SKAClick to add text

credit: LSST/NOAO

160TB raw data/second



ATHENAClick to add text

credit: LSST/NOAO

100x effective area of Chandra 
7.5 arcmin field of view



… but it’s not all big data!



— Genevieve Graves

“Annoyingly not small (and complex) data”



How do we make sense of all this data?



How do we make sense of all this data?

What do we want to learn?



NuSTAR
NASA/Goddard

How can we split 
supernovae into 
different classes?

• Eligibility criteria (is 
it a supernova?) 

• features (spectral 
lines, light curve 
shape, …)

What is the probability 
for a supernovae with 
a given spectrum/light 
curve to be a Type a?

• Eligibility criteria (is 
it a supernova?) 

• Output (classes of 
supernovae) 

• Input (spectral 
lines, light curve 
shape, …)

• Eligibility criteria (is 
it a supernova?) 

• White dwarf 
explosion models 

• Features (spectral 
lines, light curve 
shape, …)

Are Type Ia 
supernovae caused by 
the explosion of white 
dwarfs?

adapted from Hernan et al (2019)
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Question to ponder: where does this 
distinction break down?



You should just build a 
Bayesian (hierarchical) model!







☹



☹

Maybe I 
can help?



Are astronomers 
going to be 

replaced by a 
neural network?



Are astronomers 
going to be 

replaced by a 
neural network?

(no)





Boone (2019): 1907.04690



Boone (2019): 1907.04690

“However, sound causal inference requires 
not only adequate data analysis techniques 
but also subject-matter expertise about the 
causal structure of the problem under study”  

(Hernan, 2019: “Comment: Spherical Cows in a Vacuum”)



Data Science @ ADASS
• Yanxia Zhang: Photometric Redshift Estimation of Quasars by Machine Learning 

• Sweta Singh: Scientific Visualisation of Extremely Large Distributed Astronomical Surveys 

• Shraddha Surana: Machine Learning for Scientific Discovery 

• Antonia Rowlinson: Identifying transient and variable sources in radio images 

• Lightning Session 2: Automated Bayesian Inference, Supernova detection  with deep 
learning, visualization of virual observatory data, Gaussian process modelling 

• Sessions 5a and 5b: data visualization 

• Lots of posters!



A Statistical View of Our Data



Our data is often …

Vaughan et al (2016)

stochastic  vs deterministic



• unevenly sampled 
• heteroscedastic

Graham et al (2015)

Our data is often …



Finding Supermassive Black Hole Binaries:  
The curious case of PG 1302-102  

Figure 1 The parameter space of SMBH binary pairs. The expected orbital periods for
SMBH close binary pairs at the specified separations as a function of total black-hole
mass. The solid upper line for each separation indicates a z = 5 track and the solid lower
line a z = 0.05 track whilst the two internal dotted lines show z = 1.0 (lower) and z = 2.0
(upper) tracks respectively. The hatched region indicates the range over which CRTS has
temporal coverage of 1.5 cycles or more of a periodic signal. The pink shaded region
shows the region of detection for the best CRTS candidate given the range of virial black-
hole masses reported in the literature. Also shown (solid black star) is the location of the
best known SMBH binary candidate, OJ 2876.
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Figure 2 The composite light curve for PG 1302-102 over a period of 7,338 days (⇠ 20
years). The light curve combines data from two CRTS telescopes (CSS and MLS) with
historical data from the LINEAR and ASAS surveys, and the literature (see Methods for
details). The error bars represent one standard deviation errors on the photometry values.
The dashed line indicates a sinusoid with period 1,884 days and amplitude 0.14 mag.
The uncertainty in the measured period is 88 days. Note that this does not reflect the
expected shape of the periodic waveform which will depend on the physical properties of
the system. MJD, modified Julian day.

8

Graham et al (2015a)
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Did ASAS-SN kill PG1302-102? 3
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Figure 1. The combined light curve of PG1302-102 from LINEAR (pink), CRTS (black) and ASAS-SN (blue). LINEAR
and ASAS-SN have been offset to match CRTS (see text). Adopting the best-fit period and its uncertainties from G15,
sinusoids with periods of P = 1884 days (cyan dashed line) and P = 1884 ± 88 days (cyan dotted lines) have been fitted to the
LINEAR+CRTS light curve and extrapolated to guide the eye. Additionally, we have superimposed a best-fit sinusoid of the
period P= 2012 days (black dashed line), the best-fit period of the LINEAR+CRTS+ASASSN light curve that we determined
under the DRW+periodic model. The binned light curve is also shown (LINEAR: green; CRTS: orange; ASAS-SN: magenta).

Liu et al (2018)



LSST will extend our baseline by a factor of ~1.5!



sparse

Our data is often …



Asteroids







1I’Oumuamua

Discovery Channel Telescope +  
Apache Point Observatory 3.5m 



Model: Gaussian Process with periodic kernel

Bolin et al, incl Huppenkothen (2017)



Model: Gaussian Process with periodic kernel

Bolin et al, incl Huppenkothen (2017)



Model: Gaussian Process with periodic kernel

better period estimate with less data
Bolin et al, incl Huppenkothen (2017)



result: 1I’Oumuamua is extremely 
elongated, and probably tumbling



Gaussian Processes for Sparse Asteroid Light Curves

Lindberg, Huppenkothen et al (in prep)



Gaussian Processes for Sparse Asteroid Light Curves

Lomb-Scargle 
best-fit period

Lindberg, Huppenkothen et al (in prep)



Gaussian Processes for Sparse Asteroid Light Curves

Lomb-Scargle 
best-fit period

Lindberg, Huppenkothen et al (in prep)

posterior 
probability



Training data sets are biased

see also: The PLAsTiCC Team (2018)Figure Credit: Leah Fulmer



Training data sets are biased

• 8000 objects in training data set: bright, low-redshift objects

see also: The PLAsTiCC Team (2018)Figure Credit: Leah Fulmer



Training data sets are biased

• 8000 objects in training data set: bright, low-redshift objects

• 3.5 million objects in test set: fainter, more distant objects

see also: The PLAsTiCC Team (2018)Figure Credit: Leah Fulmer



Training data sets are biased

• 8000 objects in training data set: bright, low-redshift objects

• 3.5 million objects in test set: fainter, more distant objects

• training data properties are non-representative of the test set

see also: The PLAsTiCC Team (2018)Figure Credit: Leah Fulmer



(Some) Current Major Challenges in Time Domain 
Astronomy

• uneven sampling 

• heteroscedasticity 

• non-stationarity 

• multi-wavelength data sets 

• modeling multiple dimensions simultaneously (time, energy, polarimetry, …) 

• computational scaling 

• classification of sources and time series



2 S. Vaughan et al.

Over the years there have been many reports of periodic or
quasi-periodic variations from AGN, spanning the range of AGN
types, from radio to gamma-rays, and on timescales from minutes
to years. However, this field has a chequered history. Many reports
of periodic variations are based on very few observed cycles of the
claimed period, and a failure to properly account for the random
(red noise) variations which can produce intervals of seemingly pe-
riodic behaviour. See Press (1978) for a general discussion of this
point, and Vaughan & Uttley (2006) for some specific examples
of periodicity claims drawn just from X-ray observations of nearby
AGN1. Further observations of the same targets usually fail to show
the strictly repeating, coherent oscillations expected from a truly
periodic process. As we enter the era of massive time-domain sur-
veys capable of studying 105 � 107 targets, it is becoming more im-
portant to carefully assess detection procedures in order to under-
stand and control the number of false detections. In this paper we
re-examine the case of PG 1302�102, and we consider the broader
problem of how di↵erent stochastic models can make it di�cult to
distinguish periodic modulation among light curves selected from
large time-domain surveys.

2 THE LIGHT CURVE OF PG 1302�102

Figure 1 (top panel) shows the eight years of CRTS photometric
data for PG 1302�102 fitted with a sinusoidal model. The data
comprise 290 V-band magnitude estimates with a mean of ⇡ 15.0
mag. The data were taken with two very similar telescopes (CSS
and MLS; these provided 234 and 56 photometric points, respec-
tively). The sampling pattern is irregular, comprising nine ‘seasons’
each spanning 4�5 months with gaps of 6�8 months. Within each
season there are ⇠ 7 nights of data, each containing four closely
spaced (�t ⇠ few minutes) photometric measurements. The error
bars provided by the CRTS pipeline processing are in this case
overestimated by a factor of ⇡ 4 � 5. This e↵ect can be seen by
examining the short timescale variations in the data: the rms varia-
tion of the magnitude estimates within groups of nearby data (each
group spanning < 20 days, where intrinsic variability is expected
to be weak, and only including groups with > 5 points) is a factor
⇡ 4 smaller than the error bars2.

The data clearly show significant variations, with an rms ⇠ 0.1
mag. We fitted the data (using weighted least squares) with a model
comprising a sinusoid plus a constant o↵set:

V(t) = A1 cos(2⇡ f0t) + A2 sin(2⇡ f0t) +C. (1)

(This is equivalent to a model A sin(2⇡ f0t + �) + C with amplitude
given by A

2 = A
2
1 + A

2
2 and phase tan � = A1/A2.) The best-fitting

amplitude is (A2
1 + A

2
2)1/2 = 0.125 mag and the best-fitting (ob-

server frame) period is t0 = 1/ f0 = 4.65± 0.06 yr, slightly di↵erent
from the 5.16 ± 0.24 yr found by G15a. For fitting their sinusoidal
model G15a included additional archival data – notably LINEAR
data (Sesar et al. 2011) – extending the observational baseline. The
overall fit statistic is �2 = 85.7 for 287 degrees of freedom, again
indicating that the error bars are too large. Comparing this model
to a constant gives ��2 = 741.1.

1 Arguably the best candidate for quasi-periodic AGN light curve was seen
in RE J1034 � 396 (Gierlinski et al. 2008), which showed ⇠ 16 ‘cycles’ in
a single, continuous X-ray observation.
2 We have examined CRTS data for other AGN of similar magnitude and
find that the photometric error bars are often considerably larger than the
short-term scatter in the data.
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Figure 1. Panel (a) shows the ⇡ 8 years of V-band Catalina Real-time Tran-
sient Survey (CRTS) data for PG 1302�102. Panels (b) and (c) show exam-
ple simulations of red noise with the same sampling pattern as the CRTS
data (black points) plus additional data to simulate three seasons of LIN-
EAR data (blue points). Panels (b) and (c) were generated by random pro-
cesses with no periodicity present (a bending power law power spectrum,
and a damped random walk, respectively). In each case, the continuous,
error-free simulation is shown as a pink curve and the sampled data are
shown as circles. The red curve shows the best-fitting sinusoid. Examples
(b) and (c) were randomly selected from the 100 best candidates in runs of
100, 000 simulations of each process.

3 BAYESIAN MODEL COMPARISON

It is also possible to fit the data using a stochastic model. However,
is not meaningful to simply compare the �2 values for these fits.
When fitting stochastic models to individual time series, the �2 fit
statistic loses its simple meaning as a diagnostic of the ‘goodness of
fit’. (This is because the variance of the process is itself a parameter
to be fitted; the standard �2 statistic only makes sense as a likeli-
hood proxy when the variance is fixed. In fact, �2 ! 0 is possible
for any su�ciently flexible stochastic process. See also Kozłowski
2016).

In order to compare a periodic model to a stochastic model, we
have performed a Bayesian model comparison between the sinu-
soidal model and a simple stochastic process, the damped random
walk model. We first computed the posterior densities for the pa-
rameters of each model using Markov Chain Monte Carlo (MCMC)
method. We used a method based on the ensemble sampler pro-
posed by Goodman & Weare (2010) with > 105 draws based on

MNRAS 000, 1–8 (2016)

Vaughan et al , incl 
Huppenkothen (2016)

Asteroid light curves are a simpler analogue 
to finding periods in AGN

Bolin et al, incl Huppenkothen (2017)



The good news: many of the really hard problems 
have simpler equivalents in other areas of astronomy 
or even other scientific domains



Solving data science challenges 
through communities of practice

see also: http://msdse.org/reports/



Credit: Jake VanderPlas https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science



http://stingraysoftware.github.io

• 3 lead developers/maintainers (Huppenkothen, Bachetti, Stevens) 

• ~10 contributors 

• 6 completed Google Summer of Code Projects 

• astropy-affiliated project

Huppenkothen et al (2019)



The largest data science challenges 
will be solved through collaboration 
across fields

see also: http://msdse.org/reports/



Nord // Lemon Labs (in prep)

Ten Simple Rules for Researchers Engaging in Data 
Science and Domain Science Collaboration



#Astro Hack Week



#Astro Hack Week

• 5-day workshop 

• ~50 participants 

• tutorials and break-out sessions 

• project work 

• Lots of ☕ and 🍪 

• participant-driven 

• experimental



credit: Anthony Arendt



https://geohackweek.github.io https://neurohackweek.github.io

https://oceanhackweek.github.io

https://waterhackweek.github.io

https://www.electrochem.org/
233/hack-week



Take-Away Lessons



build a community first

credit: eScience Institute



build a culture that empowers people to 
ask fundamental (and trivial) questions

credit: Alex Alspaugh/University of Washington



Adapt concepts 
and ideas to your 

community’s 
needs



Experiment



Evaluate
credit: eScience Institute



http://astrohackweek.org

stay tuned for Astro Hack Week 2020!



Conclusions



Astronomical time domain data sets are 
complex, unevenly sampled, heteroscedastic, 

sparse and biased

This often makes the application of standard tools difficult



There are many data analysis 
challenges that are shared across 

scientific domains

Data science provides shared venues and a common 
language to solve these problems across domains

274 T. Belloni et al.: A model-independent analysis of the variability of GRS 1915+105

Fig. 2a – l.One example light curve and CD
from each of the 12 classes described in the
text. The light curves have a 1s bin size, and
the CDs correspond to the same points. The
class name and the observation number are
indicated on each panel.

quiet, high-variable and oscillating parts described in Bel-
loni et al. (1997a). In the CD, a C-shaped distribution is
evident, with the lower-right branch slightly detached from
the rest, and corresponding to the low count rate intervals
(typically a few hundred seconds long).

• class κ Very similar to the previous class are observations in
class λ. The timing structure, as shown by Belloni et al.
(1997b), is the same, only with shorter typical time scales
(Fig. 2o,p). In the CD, an additional cloud between the two
branches is visible (see Belloni et al. 1997b).

• class ρ Taam et al. (1997) and Vilhu & Nevalainen
(1998) presented extremely regular RXTE light curves of
GRS 1915+105, consisting of quasi-periodic ‘flares’ recur-
ring on a time scale of 1 to 2 minutes. There are differences
in the observations presented by these authors, and for this
reason we separate them in two classes. The first, class ρ
(Fig. 2q,r), is extremely regular in the light curve, and in the
CD it presents a loop-like behavior (described as ring-like

in Vilhu & Nevalainen 1998, where data with lower time
resolution were considered).

• class ν There are two main differences between observations
in this class and those of class ρ. The first is that they are
considerably more irregular in the light curve, and at times
they show a long quiet interval, where the source moves to
the right part of the CD (see Fig. 2s,t). The second is that, at
1s time resolution, they show more structure in the profile
of the ‘flares’, notably a secondary peak after the main one
(see Fig. 17b).

• class α Light curves of observation intervals of class α show
long (∼1000 s) quiet periods, where the count rate is below
10000 cts/s, followed by a strong (>20000 cts/s) flare and
a few 100s of seconds of oscillations(see Fig. 2u,v). The
oscillations start at a time scale of a few dozen seconds and
become progressively longer. This pattern repeats in a very
regular way. In the CD, the quiet periods result in elongated
clouds, the oscillations in small rings (not clearly visible
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Figure 3: The change in comorbidity prevalence vs. the progression state transitions averaged over 10,000

virtual patients generated by our model.

(a) A Stable Trajectory

(b) A Progressive Trajectory

Figure 4: Inference of the progression trajectory and

comorbidity onset of individual patients. Predicted

stages are at the top of each plot; gray bars indi-

cate predicted comorbidity onset; and stars denote

the occurrence of relevant ICD-9 codes in the data

(descriptions are on top of the timeline).

vere stage. After 6 months, our model diagnosed this pa-
tient with cardiovascular disease. The patient was subse-
quently moved into Stage 2 and stayed there throughout the
record span. Note that the patient had a single occurrence
of COPD related diagnosis code in the record. However,
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Figure 5: The convergence of our algorithm.

our model decided this was not enough evidence to turn
on the COPD comorbidity; as a result, it was explained by
the leak term (for all anchor findings we assigned a fixed
leak probability of 10�6). In contrast to patient (a), patient
(b) exhibited a quick exacerbation of COPD. The patient
started with cardiovascular disease and musculoskeletal dis-
order (Stage 1), followed by COPD and diabetes onset soon
afterward (Stages 2 and 3), then eventually developed psy-
chological disorder and obesity (Stage 4). We use these two
representative patients to demonstrate the potential of in-
corporating our model into clinical decision support systems
to provide medical practitioners with evidence based predic-
tion and recommendation.

5.3.4 Model Convergence and Runtime
In Figure 5 we show the convergence behavior of the learn-

ing algorithm in terms of the relative change in Q as well as
the complete data log-likelihood. We did 10 Gibbs sampling
updates before first updating Q and ⇡. We repeated the



One of the major challenges of 
interdisciplinary research is the 
language barrier between fields

We need people who can translate across disciplinary jargon



Interdisciplinary and data science 
research requires community building 

first and foremost

community building ≠ putting people in the same room



What can we learn from this community? 
What mistakes should we avoid making?


