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Radio data

● Increase in computing power makes it attractive to develop 
(physically) “simpler” telescopes with better electronics
– E.g. LOFAR: simple antennas, but large N

● Large field of view, high spatial, time and frequency 
resolutions

● Increases processing challenge



Radio data

● Large data volumes
– 1-10 GB/s for LOFAR

● Requires lots of 
processing & computing

● Novel algorithms 
required to reach 
scientific quality

Downloaded LOFAR data per cycle (half year)
BF=beam formed, UV=imaging



Square-Kilometre Array

● More antennas, more 
data (~TB/s)

● Higher accuracy 
requirements

● Design finished, 
construction soon to 
start!



Example processing overview

Pipeline overview for generic LOFAR imaging

...



What is science-ready data?

Pipeline overview for generic LOFAR imaging

...
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What is science-ready data?
● At least a high-quality image

– E.g. for Dutch LOFAR: 10k x 10k, 5’’ (and similar for SKA)

– 0.1’’ for international (‘long baseline’) LOFAR 

– Enough for some science goals (e.g. event horizon telescope)

● Often, more is required to extract science:
– Source positions, size

– Spectral indices (or spectral information)

– Recover diffuse emission

– Include international baselines with full FOV (100k x 100k images!)

– Power spectra (e.g. Epoch of Reionization)

– Polarization

– Long observing runs (e.g. Epoch of Reionization: 100 nights)

– Need to model off sources away from the pointing centre

The EHT Collaboration et al. 2019



What is science-ready data?
● In the ideal situation, an astronomer:

– has an idea, with a certain hypothesis

– requests (and is awarded) observing time

– receives the “science-ready” data products

– is able to immediately answer the hypothesis

– Nobel price.

● Advantages:
– (Almosts) no redundant processing knowledge required by astronomer

– Less time in learning instrument → more time for science!

– Accessible to any astronomer → hence more science!

– Nobel price.
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Even when all processing is done 
by an observatory,
astronomer’s still need to
understand their data

Real
Or not?



Not how radio astronomy 
traditionally works
● Observatories just provide the data
● Many PhDs are spend on data processing
● Many tools are written to solve the same problem
● Telescope is only fully accessible to expert teams

● Recently, this is changing:
– E.g. LOFAR, ALMA, APERTIF, SKA (want to) provide higher level products

– ( Also many posters about great pipelines here at ADASS! )



What can the LOFAR observatory do for you?

...

Raw data
During commissioning
(2010)

Some preprocessing
In first cycles
(2013)

Include lossy
compression
(Dysco; 2018)

Full direction-independent calibration
done by LOFAR observatory
(2019) Planned for later this year!

Pipeline overview for generic LOFAR imaging



Making radio-data processing pipelines is challenging!

● Complex
● High performance
● State of the art, experimental

– Involves trial and error with algorithms

● Needs astronomical domain knowledge
– Translates into a large number of ‘heuristics’ (sometimes even machine learning)

● Hard to get a grant to “write a generic pipeline”
– Common answer: “that’s not science!”

● No money / resources / credits / plan for support
● No formal software engineering processes used
● Difficulty often underestimated / not understood



Processing requirements

High performanceModularity

Experimental
(Flexible, prototyping)

Easy to use
Well documented

Support
Robust

Complex

● Many of these software 
attributes ‘clash’

● Requiring one of these can be 
hard.

● Requiring all of them 
simultaneously is really, really 
difficult

Example:
As long as code is still 
experimental (changing), it is 
difficult to support / document 
it.



Challenge of radio-data processing pipelines

● Many unused radio-astronomy tools have been published
– Might be slightly diferent from what an astronomer want

– No money for extension, support or maintenance available

● Next team needs to re-invent the wheel :(
– Constructing a new algorithm is much more rewarding

● A tool that is not used might still provide new insights
● → Why is it not used?
● → publish your insights including the negatives



An example: AOFlagger

● AOFlagger is a tool for 
detecting interference in 
radio data

● Relatively large user base
(for radio astronomy)

● Written in C++

● http://aoflagger.sourceforget.net

Source downloads per country
of latest version

(3000 total – excludes binary downloads)



An example: AOFlagger

Part of a WSRT data set



An example: AOFlagger

Part of a WSRT data set, flagged by AOFlagger



An example: AOFlagger

● Works with lots of 
specialized algorithms & 
heuristics
(66K lines of code.)

● Default strategy works 
reasonably well for
many telescopes…

● But is not always
optimal.



An example: AOFlagger

● So I wrote a gui to
experiment with the
settings

● Full list of settings
is a “script” of actions

● Hard to understand
for other astronomers!



An example: AOFlagger

● Solution (or so I thought):
 A Python interface!

● Algorithms in C++,
 “glue” code in Python

● Far too slow :(
– Need for very low-level managing and 

synchronization of memory

– Synchronization of threads major issue

● Old interface is still used.
– Example of difficulty of experimental, high-

performance, yet user-friendly software



An example: IDG with WSClean

● WSClean is an imaging 
algorithm

● Transforms interferometric data 
into images
– Inverse transform of instrument

– Deconvolution

● Used for many telescopes
● About 40K lines of C++ code

● http://wsclean.sourceforge.net/
Best image available of 3C 196

(Made with WSClean from LOFAR data)

5’’



An example: IDG with WSClean

● Image domain gridding (IDG) 
is a new algorithm
– Van der Tol, Veenboer, Offringa (2018)

– See poster by Bas van der Tol

● Performs one step of the 
imaging process (gridding)

● Implemented as a library
● Allows better&faster imaging:

– Can use GPUs

– Allows simultaneous corrections for ionosphere 
and instrument response

– Allows images of ~30k x 30k

● https://gitlab.com/astron-idg/

LOFAR beam applied during imaging stage
Producing “optimally weighted” image



An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding
?

Data in
time order

Flat-gain
Image

Beam-
weighted
Image

Data in
Baseline

order

Image

State of the software in 2017

Very nice, clean interface



An example: IDG with WSClean
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Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding

Image

State of the software in 2017

Reorder
data

Correct
image



An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding

Image

State of the software in 2017

Reorder
data

Correct
image

Much more meta data required
than anticipated



An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding

Image

State of the software in 2017

Reorder
data

Correct
image

}

Too slow: IDG reaches «10% of 
its theoretical throughput



An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding

Image

State of the software in 2019

→ Example of challenging modularity + high 
performance
→ Also hard to explain to management why it 
takes 2 years to combine two existing tools



An example: IDG with WSClean

} IDG

Casa
WSClean default
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(Offringa et al. 2019, A&A)

WSClean, more
accurate + slower

Despite being a lot of work, IDG was shown to be the only gridder that is 
accurate enough for (LOFAR / SKA) Epoch of Reionization science:



An example: MWA’s GLEAM survey

Hurley-Walker et al. 2016



An example: MWA’s GLEAM survey

● Murchison Widefield Array (MWA)
● MWA Phase 1 has ~2’ resolution

– No “direction-dependent corrections” necessary

– Easier (but not easy) to process compared to LOFAR data

● Pipeline steps:
– RFI detection (using AOFlagger)

– Averaging (Cotter)

– Format conversion (to casacore Measurement Set format)

– Calibration (+ transfer)

– Imaging (WSClean)

– Mosaicking (SWarp)

– Source detection (Aegean)

– Source matching + correction

} Multiple times (selfcal)
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An example: MWA’s GLEAM survey
● Approximately 100k lines of code 

were written for the GLEAM 
survey
(excludes monitoring, scheduling & control 
software)

● Constructive cost model says:
● – 100k lines of code

– of “average complexity”
– costs $2.5M USD

● That’s for a single science case
● ...and just the final software



Challenges of radio data processing

● Need to reuse software
– We can’t write & maintain 100 K lines of code for every science case / survey / …

– But reuse requires modularity

● Challenge of high performance:
– Harder to modularize: reusable interfaces often too slow

– Harder to reuse code: needs to be written for (streaming) data in a specific order

– Can’t reorder or write intermediate products to disk

● Challenge of experimental code:
– End up writing several different algorithms until the “correct” one is found

● Maybe as much as 200-300 K lines of code were actually written to process the survey

– Can’t really “quickly prototype” algorithms, because they need to perform well to even test them



Summary

• Radio processing is challenging
• Making observatories produce Science-ready data is of 

high importance:
– MUCH lower learning curve for astronomers

– Processing experts at observatories, reuse of code

– Science accessible to wider community

– Increased science output!

• Bottomline:
An increase in resources for the central development of 
processing algorithms (including maintenance + 
support!) will result in larger science output
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