
Designing radio-astronomical software
for delivering science-ready products

André Offringa

Astronomer at ASTRON & Kapteyn Institute Groningen

Co-PI of LOFAR EoR project

Designing radio-astronomical software
for delivering science-ready products

André Offringa

Astronomer at ASTRON & Kapteyn Institute Groningen

Co-PI of LOFAR EoR project

1

2

3

Radio data

● Increase in computing power makes it attractive to develop
(physically) “simpler” telescopes with better electronics
– E.g. LOFAR: simple antennas, but large N

● Large field of view, high spatial, time and frequency
resolutions

● Increases processing challenge

Radio data

● Large data volumes
– 1-10 GB/s for LOFAR

● Requires lots of
processing & computing

● Novel algorithms
required to reach
scientific quality

Downloaded LOFAR data per cycle (half year)
BF=beam formed, UV=imaging

Square-Kilometre Array

● More antennas, more
data (~TB/s)

● Higher accuracy
requirements

● Design finished,
construction soon to
start!

Example processing overview

Pipeline overview for generic LOFAR imaging

...

What is science-ready data?

Pipeline overview for generic LOFAR imaging

...

≥

What is science-ready data?
● At least a high-quality image

– E.g. for Dutch LOFAR: 10k x 10k, 5’’ (and similar for SKA)

– 0.1’’ for international (‘long baseline’) LOFAR

– Enough for some science goals (e.g. event horizon telescope)

● Often, more is required to extract science:
– Source positions, size

– Spectral indices (or spectral information)

– Recover diffuse emission

– Include international baselines with full FOV (100k x 100k images!)

– Power spectra (e.g. Epoch of Reionization)

– Polarization

– Long observing runs (e.g. Epoch of Reionization: 100 nights)

– Need to model off sources away from the pointing centre

The EHT Collaboration et al. 2019

What is science-ready data?
● In the ideal situation, an astronomer:

– has an idea, with a certain hypothesis

– requests (and is awarded) observing time

– receives the “science-ready” data products

– is able to immediately answer the hypothesis

– Nobel price.

● Advantages:
– (Almosts) no redundant processing knowledge required by astronomer

– Less time in learning instrument → more time for science!

– Accessible to any astronomer → hence more science!

– Nobel price.

What is science-ready data?
● In the ideal situation, an astronomer:

– has an idea, with a certain hypothesis

– requests (and is awarded) observing time

– receives the “science-ready” data products

– is able to immediately answer the hypothesis

– Nobel price.

● Advantages:
– (Almosts) no redundant processing knowledge required by astronomer

– Less time in learning instrument → more time for science!

– Accessible to any astronomer → hence more science!

– Nobel price.

Even when all processing is done
by an observatory,
astronomer’s still need to
understand their data

Real
Or not?

Not how radio astronomy
traditionally works
● Observatories just provide the data
● Many PhDs are spend on data processing
● Many tools are written to solve the same problem
● Telescope is only fully accessible to expert teams

● Recently, this is changing:
– E.g. LOFAR, ALMA, APERTIF, SKA (want to) provide higher level products

– (Also many posters about great pipelines here at ADASS!)

What can the LOFAR observatory do for you?

...

Raw data
During commissioning
(2010)

Some preprocessing
In first cycles
(2013)

Include lossy
compression
(Dysco; 2018)

Full direction-independent calibration
done by LOFAR observatory
(2019) Planned for later this year!

Pipeline overview for generic LOFAR imaging

Making radio-data processing pipelines is challenging!

● Complex
● High performance
● State of the art, experimental

– Involves trial and error with algorithms

● Needs astronomical domain knowledge
– Translates into a large number of ‘heuristics’ (sometimes even machine learning)

● Hard to get a grant to “write a generic pipeline”
– Common answer: “that’s not science!”

● No money / resources / credits / plan for support
● No formal software engineering processes used
● Difficulty often underestimated / not understood

Processing requirements

High performanceModularity

Experimental
(Flexible, prototyping)

Easy to use
Well documented

Support
Robust

Complex

● Many of these software
attributes ‘clash’

● Requiring one of these can be
hard.

● Requiring all of them
simultaneously is really, really
difficult

Example:
As long as code is still
experimental (changing), it is
difficult to support / document
it.

Challenge of radio-data processing pipelines

● Many unused radio-astronomy tools have been published
– Might be slightly diferent from what an astronomer want

– No money for extension, support or maintenance available

● Next team needs to re-invent the wheel :(
– Constructing a new algorithm is much more rewarding

● A tool that is not used might still provide new insights
● → Why is it not used?
● → publish your insights including the negatives

An example: AOFlagger

● AOFlagger is a tool for
detecting interference in
radio data

● Relatively large user base
(for radio astronomy)

● Written in C++

● http://aoflagger.sourceforget.net

Source downloads per country
of latest version

(3000 total – excludes binary downloads)

An example: AOFlagger

Part of a WSRT data set

An example: AOFlagger

Part of a WSRT data set, flagged by AOFlagger

An example: AOFlagger

● Works with lots of
specialized algorithms &
heuristics
(66K lines of code.)

● Default strategy works
reasonably well for
many telescopes…

● But is not always
optimal.

An example: AOFlagger

● So I wrote a gui to
experiment with the
settings

● Full list of settings
is a “script” of actions

● Hard to understand
for other astronomers!

An example: AOFlagger

● Solution (or so I thought):
 A Python interface!

● Algorithms in C++,
 “glue” code in Python

● Far too slow :(
– Need for very low-level managing and

synchronization of memory

– Synchronization of threads major issue

● Old interface is still used.
– Example of difficulty of experimental, high-

performance, yet user-friendly software

An example: IDG with WSClean

● WSClean is an imaging
algorithm

● Transforms interferometric data
into images
– Inverse transform of instrument

– Deconvolution

● Used for many telescopes
● About 40K lines of C++ code

● http://wsclean.sourceforge.net/
Best image available of 3C 196

(Made with WSClean from LOFAR data)

5’’

An example: IDG with WSClean

● Image domain gridding (IDG)
is a new algorithm
– Van der Tol, Veenboer, Offringa (2018)

– See poster by Bas van der Tol

● Performs one step of the
imaging process (gridding)

● Implemented as a library
● Allows better&faster imaging:

– Can use GPUs

– Allows simultaneous corrections for ionosphere
and instrument response

– Allows images of ~30k x 30k

● https://gitlab.com/astron-idg/

LOFAR beam applied during imaging stage
Producing “optimally weighted” image

An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding
?

Data in
time order

Flat-gain
Image

Beam-
weighted
Image

Data in
Baseline

order

Image

State of the software in 2017

Very nice, clean interface

An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding

Image

State of the software in 2017

Reorder
data

Correct
image

An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding

Image

State of the software in 2017

Reorder
data

Correct
image

Much more meta data required
than anticipated

An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding

Image

State of the software in 2017

Reorder
data

Correct
image

}

Too slow: IDG reaches «10% of
its theoretical throughput

An example: IDG with WSClean

WSClean

Data weighting
Selection

Deconvolution

User interface

data options

IDG
(library)

Gridding

Image

State of the software in 2019

→ Example of challenging modularity + high
performance
→ Also hard to explain to management why it
takes 2 years to combine two existing tools

An example: IDG with WSClean

} IDG

Casa
WSClean default

G
ri d

d i
ng

 e
r r

or
 →

(in

 p
o w

e r
 s

pe
ct

ru
m

)

(Offringa et al. 2019, A&A)

WSClean, more
accurate + slower

Despite being a lot of work, IDG was shown to be the only gridder that is
accurate enough for (LOFAR / SKA) Epoch of Reionization science:

An example: MWA’s GLEAM survey

Hurley-Walker et al. 2016

An example: MWA’s GLEAM survey

● Murchison Widefield Array (MWA)
● MWA Phase 1 has ~2’ resolution

– No “direction-dependent corrections” necessary

– Easier (but not easy) to process compared to LOFAR data

● Pipeline steps:
– RFI detection (using AOFlagger)

– Averaging (Cotter)

– Format conversion (to casacore Measurement Set format)

– Calibration (+ transfer)

– Imaging (WSClean)

– Mosaicking (SWarp)

– Source detection (Aegean)

– Source matching + correction

} Multiple times (selfcal)

An example: MWA’s GLEAM survey

● Murchison Widefield Array (MWA)
● MWA Phase 1 has ~2’ resolution

– No “direction-dependent corrections” necessary

– Easier (but not easy) to process compared to LOFAR data

● Pipeline steps:
– RFI detection (using AOFlagger)

– Averaging (Cotter)

– Format conversion (to casacore Measurement Set format)

– Calibration (+ transfer)

– Imaging (WSClean)

– Mosaicking (SWarp)

– Source detection (Aegean)

– Source matching + correction

} Multiple times (selfcal)

An example: MWA’s GLEAM survey
● Approximately 100k lines of code

were written for the GLEAM
survey
(excludes monitoring, scheduling & control
software)

● Constructive cost model says:
● – 100k lines of code

– of “average complexity”
– costs $2.5M USD

● That’s for a single science case
● ...and just the final software

Challenges of radio data processing

● Need to reuse software
– We can’t write & maintain 100 K lines of code for every science case / survey / …

– But reuse requires modularity

● Challenge of high performance:
– Harder to modularize: reusable interfaces often too slow

– Harder to reuse code: needs to be written for (streaming) data in a specific order

– Can’t reorder or write intermediate products to disk

● Challenge of experimental code:
– End up writing several different algorithms until the “correct” one is found

● Maybe as much as 200-300 K lines of code were actually written to process the survey

– Can’t really “quickly prototype” algorithms, because they need to perform well to even test them

Summary

• Radio processing is challenging
• Making observatories produce Science-ready data is of

high importance:
– MUCH lower learning curve for astronomers

– Processing experts at observatories, reuse of code

– Science accessible to wider community

– Increased science output!

• Bottomline:
An increase in resources for the central development of
processing algorithms (including maintenance +
support!) will result in larger science output

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

