Teaching our Students
Astro Computing
BoF B.6 – ADASS XXIX
Teaching our students astro computing – BoF B.6 ADASS XXIX

• Classroom experiences
 1. Martin Vogelaar, University of Groningen
 2. Peter Teuben, University of Maryland

• Your experiences

• Can we define a top 5 of skills we should learn our students?

• Should we maintain a repository of Python notebooks for astronomy education?

• Which future developments will become important?
Teaching our students astro computing – BoF B.6 ADASS XXIX

- Teaching astro computing:

 teaching students knowledge and skills to support their practicals and introduce them to data science

- Evolution in topics and teaching methods
- The necessity – past, current, future
- Benefits of sharing views and experiences
• Started with a course in 1997
 • Reason: skill levels varied too much amongst students

• Subjects
 • UNIX topics, command line utilities
 • Find your way on the local systems
 • network, printers, remote login
 • FITS
 • Creating reports with LaTeX
 • Plotting with SM (SuperMongo)
 • A bit of Mathematica
 • Short introductions to GIPSY, AIPS, IRAF
Teaching our students astro computing – BoF B.6 ADASS XXIX

• Tools
 • Local accounts (staff level)
 • Local hardware (no restrictions)
 • Involvement computer support group
 • Documentation on Internet pages
 • Oral introductions, assignments, project

• Notable
 • Every UNIX folder and most of the files were accessible to all
 • Material on Internet was copied (both ways)
 • Second year 2 ECTS (56h) course with on average 10 students
Teaching our students astro computing – BoF B.6 ADASS XXIX

• Big dip in 2001
 • Numerical analysis not mandatory
 • Programming not part of the curriculum
 • Attitude: students fill the gaps themselves

• After an ADASS (2000?) talk we started to introduce Python
 • Version 2.1
 • Used GNUplot for plotting (interface passing strings)
 • We trusted there would be a convergence of numeric, numarray, scipy-core → NumPy
 • Local stuff to read FITS files before PyFits 1.0
Teaching our students astro computing – BoF B.6 ADASS XXIX

• Course in 2019
 • Name: Introduction to Programming and Computational methods
 • First year, 5 ECTS (140h)
 • Documentation hosted on an intranet (prevent copies)
 • Still topics from Linux, LaTeX, FITS
 • Major part is mastering Python
 • Average between 70 and 80 students
 • Python material is astronomy focused right from the start!
Teaching our students astro computing – BoF B.6 ADASS XXIX

• Workflow
 • Getting to know the local environment (Linux, network, storage)
 • Introduction to tools: IPython, Jupyter Notebook, Jupyter Hub
 • Python basics
 • Packages (FITS, Plotting, numerical- and symbolic analysis)
 • Techniques (Rotation matrices, Fourier transforms, LSQ fitting)
Teaching our students astro computing – BoF B.6 ADASS XXIX

• Setup
 • 8 weeks course (5 ECTS=140h)
 • Short oral introductions each week
 • Practical work 3 x 3 hours a week
 • Tasks with assignments (notebooks checked by T.A.’s)
 • Midterm (written, not digital)
 • Final exam (digital)
 • Resits are projects in a notebook

• First steps using Nbgrader
• Notebooks integrated with SPHINX
Teaching our students astro computing – BoF B.6 ADASS XXIX

• 1. Notebook: Python for users of graphical calculators
• 2. Notebook: Python for starters
• 3. Notebook: Python sequences
• 4. Notebook: Types and conversions
• 5. Notebook: User defined functions
• 6. Notebook: Python sequences with numbers
• 7. Notebook: Simple visualization with Matplotlib
• 8. Notebook: Calculations with NumPy arrays
• 9. Notebook: NumPy arrays with random numbers, the basics
• 10. Notebook: Complex numbers
• 11. Notebook: NumPy and special numbers
• 12. Notebook: Functions (advanced)
• 13. Notebook: Object Oriented Programming basics
• 14. Notebook: Matplotlib, Object Oriented
• 15. Notebook: Matplotlib animations
• 16. Notebook: SciPy basics
• 17. Notebook: Symbolic mathematics
• 18. Notebook: Introduction to AstroPy
Teaching our students astro computing – BoF B.6 ADASS XXIX

• 19. Notebook: Reading data from text files
• 20. Notebook: N-dimensional data structures
• 21. Notebook: Visualization in 3 dimensions
• 22. Notebook: FITS files
• 23. Notebook: Linear Algebra
• 24. Notebook: Fourier Transforms
• 25. Notebook: Ordinary Differential Equations
• 26. Notebook: Exploring the normal distribution and Gaussian functions
• 27. Notebook: Linear Least Squares method and linear regression
• 28. Notebook: Non-Linear Least squares fitting, the basics
• 29. Notebook: Orthogonal Fitting with ODR
• 30. Notebook: Least squares fitting in the log(-log) domain
Teaching our students astro computing – BoF B.6 ADASS XXIX

• Results
 • Improved cohesion between practical courses (at least the astronomy courses)
 • Immediate application of skills to projects of other courses (Physics lab, EM)
 • Improved understanding of concepts such as Fourier Transforms
• Results (continued)
 • Evaluations by students are positive
 • Repository of notebooks also used by master students
 • Percentage of students want to learn C/C++ after course
 • Level of Bachelor projects has been increased
Some observations:

- Expectations of staff often not realistic
- Losing depth after adding more and more topics
- New students are not becoming less intelligent and are not poorly educated
 - Better language skills
 - Trained in cooperative learning
 - Used to modern (cloud based) tools
- Coordination with other courses is essential but difficult
- Support of system management is essential
- Education is subject to an increasingly number of rules
- Fraction of colleagues is skeptical but their concerns seem out of date
Teaching our students astro computing – BoF B.6 ADASS XXIX

• Future at Kapteyn
 • Need to shift relevant computational topics to the other courses that require it
 • We will lose computer facilities for students when moving to a new building
 • Perhaps we should move earlier to platform independent solutions
 • Physics department starts to use Google Colab
 • Youth hackathon seems ideal to get the attention of high school students interested in data science.
Future teaching astro computing
- Would like to see list with shared topics
- Availability of generic Jupyter notebooks for astronomy education
- Need to improve the link with data science